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Abstract

We present a method for accurately localizing a ground image with the aid of satel-
lite imagery by transferring between the two image modalities. We perform visual
localization by estimating the co-occurrence probabilities between the ground and
satellite images. This method allows us to estimate location probabilities at arbi-
trary locations, thus enabling more information for accurate localization without
expanding the ground-image database. We also propose a ranking-based algo-
rithm to learn location-discriminative feature projection matrices that result in
further improvements in accuracy. We evaluate our method on the Malaga []
and KITTI [9] datasets and demonstrate significant improvements.

1 Introduction

Autonomous vehicles have recently received a lot
of attention in the research community. Accurate
estimation of a vehicle’s location is a key capabil-
ity to realizing autonomous operation. Satellite
imagery provides an alternative, readily-available
source of information that can be employed as a
reference for vehicle localization. In this paper,
we are interested in transferring between ground

o ‘ and satellite image modalities. We present a sys-
(a) ground image (b) satellite image tem that takes as input a stereo ground image ac-
Figure 1: Given a ground image , our method out- dquired by a vehicle, and returns its location in a
puts the vehicle location (blue) on the satellite image, geo-referenced satellite image (Fig. @), assuming
along the known vehicle path (orange). access to a database of ground (stereo) and satel-
lite images of the environment.

Previous work has achieved good results on visual place recognition and large scale geo-
localization [0, 5, 2, T4, @]. However, the problem of determining the location of a ground image
in a satellite image, with the focus in precision, hasn’t been intensively explored yet. Cummins and
Newman [5] and Siinderhauf et al. [T4] describe methods for ground-to-ground visual place recog-
nition. Their methods are limited to locations associated with the geo-tagged database. Hays and
Efros [I0] and Lin et al. [I?] address the problem of identifying the location of a ground image over
impressively large areas using a satellite image, where the focus is on scalability across different
regions. Viswanathan et al. [T5] and Chu and Vu [Z] localize the ground image by matching its
orthographic texture pattern with the satellite image. These latter approaches perform well, but rely
on the existence of clear, non-occluded orthographic information.

Our approach learns to transfer location information between ground and satellite images, and esti-
mates the co-occurrence probability of a query ground image and a local satellite image at a particu-
lar location. In this way, our approach uses readily available satellite images for localization, which
improves accuracy without requiring a dense database of ground images. We also propose a ranking-
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Figure 2: A depiction of the ground and satellite feature dictionary learning process.

based algorithm to learn feature projection matrices that increase the feature’s discriminating power
in terms of location, thus further improving the localization accuracy. The novel contributions of this
paper are: 1) We propose a strategy for localizing a camera based upon an estimate of the ground
image-satellite image co-occurrence, which improves localization accuracy without ground image
database expansion. 2) We describe a ranking-based method that learns general feature projection
matrices that further improve the accuracy by increasing the location-discrimination of features.

2 Approach

2.1 Ground-Satellite Image Feature Dictionary Construction

The ground-satellite dictionary captures the relationship that exists between feature-based represen-
tations of ground images and their corresponding overhead view. Specifically, we use three types of
features: 1) Pixel-level RGB intensity, which we smooth using bilateral filtering to preserve color
transitions [3]. 2) Edge potentials for which we use a structured forest-based method [[] that is
robust to non-semantic noise and can be computed in real-time. 3) Neural semantic attributes that
are also pixel-wise dense. For these, we use fully-convolutional neural networks [I3] trained on
ImageNet [6] and fine-tuned on PASCAL VOC [8].

For each ground image in the database, we identify the corresponding satellite image centered on
and oriented with the ground image pose. We then compute pixel-wise features for both images.
Next, we compute the ground image features {g?*“’} on a fixed-interval 2D grid, and project them
onto the satellite image using the depth obtained via image stereo [[I6]. Points that are outside the
satellite image are rejected. We record the satellite features corresponding to the remaining projected
points ({s%“*}). We repeat this to form our one-to-one ground-satellite feature dictionary. We store
the dictionary with two k-d trees for fast retrieval. Figure D illustrates this process.

2.2 Location-Discriminative Projection Learning

The goal of learning projection matrices is to identify two linear projections W, and W that trans-
form the features into a space such that features that are close to each other in this projected space
also correspond to physical locations that are nearby. We formulate this as optimization over a loss
function that expresses the sum of all location distances between each feature point and its nearest
neighbor in the projected feature space. For ground images, for example, we have

Wy = argminz AL(,k}) = argminz AL(i,argmin f, (i, k, W)) (1)
w5 w5 kEN(i)



Algorithm 1: Learning a projection matrix

where AL(i, k) is the location distance be-
tween two feature points, N(¢) is the neigh-

Input: {g{"“‘}, {L(i)}
QOutput: W
1: Initialize W =T andt =0
2: for epi=1:MAXITER do

3: for each 7 do

4 t=epi X tmar + 1

5: i fope— min ( fi,k_mm) > 0 then
6: Ol 0 fire min fik) /OW
7: AW; + ApDAM({0ly, ..., 0l }) [IT]
8: W<+ W — AWt

9: end if

10: end for

11: end for

borhood around the feature 7 in feature space,
and f, (i, k, W) = | Wggiet — Wglict||, (short
as f; , for simplicity). A similar definition is
used for Ws. The objective of projection is
that feature pairs that are closest in embedding
space are also closest in location. This leads us
to solving a ranking problem that is equivalent
to Eqn. [0, defined by hinge-loss ¢ as below:

= i ks — Ini ik — Mg 2
‘ Z(f - klenﬁr?n(f * m’k>>+ ?
where  m;p = AL(i, k) — AL(i, k), and

(x)4+ = max(0, ). Intuitively, we would like

using stochastic gradient decent with Adam [IT

fikr to be smaller than any other f;x by a
margin m; ;. We minimize the loss function ()
] as the weight update algorithm. Algorithm [

describes the process, it is repeated twice for both W, and W.

2.3 Localization

In localization, we compute the probability
P(L|19) that a given query ground image [?
was taken at a particular position and orienta-
tion L, where we interpolate the database loca-
tions on the vehicle path to get a larger number
of candidates for L (Figure B). In order to com-
pute this probability, we first extract features for
the query image /7 and then retrieve the pre-
computed dense features for the satellite image
associated with L. Next, we sample the query
ground image features with a 2D grid, and their
corresponding satellite image features using the
query stereo image. After rejecting points that
lie outside the satellite image, we obtain a set
of ground-satellite feature pairs, where the nth
pair is denoted as (g2, sL).

For each feature pair, we evaluate their co-
occurrence score according to the size of the in-
tersection of their respective database neighbor
sets in the projected feature space. To do this,
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Figure 3: Left: localization by image-to-image match-
ing. Right: by estimating the ground-satellite co-
occurrence, our method yields a more fine grained dis-
tribution over the camera’s location. I, and I denote
the query and database ground images. Lﬁ% denotes
database image location. L;-’lf’l and L?f’Q are interpolated
locations along the vehicle path. Our method is able to
evaluate localization possibilities of L;-i,bl and L?f’Q with-
out knowing their ground images.

we first transform the features as W g7 and W.;s,% Next, we retrieve the M -nearest neighbors in
the transformed dictionary, each for the transformed ground and satellite images, using Approxi-
mate Nearest Neighbor [1]. The retrieved neighbor index sets are denoted as {id'(W,gi)} and
{id™(W,sE)}, and the Euclidean feature distances are denoted as {dgL(Wg g%)} and {d™(W,sk)}.
A single pair co-occurrence score S(sL|g?) is computed as the consistency between the two re-
-1
trieved sets 3 gd;’“ (W,g2) - di(Wgsg)) where I = {id™(Wyg2)} N {id™ (WysE)} de-
(m1 Mo ) S
notes all the (m1, mg) pairs that are in the intersection of the two sets. We then compute the desired
probability over the location L for the query image 19 as P(L|1%) o< 3 score(sk|g2). We determine
n

the final location as that where P(L|I?) is maximized.
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Figure 4: Example images and data split. Left to right: KITTI-City, KITTI-Residential, and Malaga. Yellow,
cyan, and purple denote the database, revisit query, and the outside query set, respectively.

Method KITTI-City KITTI-Resi. o
FAB-MAP 1.24(0.69) 2.29 (1.55) "
EFM  0.87 (0.15) 1.18(0.91) }.. FAB-MAP 493% 61.6%
Ours-GO 0.81 (0.07) 1.13 (0.81) ™ EFM  894% 43.6%
Ours-NP  0.41(0.20) 0.62 (0.33) | == Ours  90.2% 86.6%
Ours-full  0.39 (0.22) 0.42 (0.20) o ==
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Figure 5: Left to right: KITTI error in meters; Malaga precision-recall curve; Malaga optimal precision-recall.
3 Experimental Results

Method Precision Recall

We evaluate our method on the widely-used KITTI [9] and Malaga-Urban [] datasets. We conduct
two experiments on the KITTI dataset. First, we use five raw data sequences from KITTI-City,
which include 822.9 m driving distance. We randomly select 40% of the images as the database
image set, and use the rest as the query image set. Second, we consider the scenario in which the
vehicle initially passes an environment and later uses the resulting database for localization upon a
subsequent revisiting. We use a long sequence from KITTI-Residential, which has 3080 m driving
distance (233 m for the query revisiting). For Malaga-Urban we adopt the setup similar to KITTI-
Residential. In addition, we also set aside images taken from a path outside the database to evaluate
the ability to handle negative queries. We use Malaga-10, which includes 6.08 km driving distance
(583.5m and 534.3 m as the inside and outside query set). Figure B shows example images and the
data split. Unlike the KITTI datasets, the quality of the ground-truth location tags in the Malaga
dataset is relatively poor. Thus, we evaluate the ability to localize the camera within 10 m of the
ground-truth location as opposed to localization error.

We compare two previous methods and three variations of our method: 1. The well-known FAB-
MAP [8] with SUREF features and cluster-size of 0.45. 2. Exhaustive Feature Matching (EFM) that
exhaustively matches all SURF features for image retrieval, with RANSAC-based geometric check.
3. Ours-Ground-Only (Ours-GO) that doesn’t consider satellite images and instead performs ground
image retrieval using our image features (as opposed to SURF). 4. Ours-No-Projection (Ours-NP)
that uses two identity matrices instead of the learned matrices. 5. Lastly, our full method.

The KITTI results are shown in Figure B. For Malaga we define true positives as images that are
identified as inliers and localized within 10 m of their ground-truth locations, Figure B shows the
precision-recall curve. We pick optimal thresholds based on optimal square area under curves,
Figure B shows the resulting statistics. Ours-GO achieves lower error than the two SURF-based
methods, which shows the effectiveness of our proposed features at discriminating between ground
images that has significant overlapping. Ours-NP further reduces the error by interpolating the tra-
jectory (as in Figure B3) and evaluating ground-satellite co-occurrence probabilities, which brings in
more localization information. Ours-full achieves the lowest error, which demonstrates the effec-
tiveness of the learned location-discriminative projection matrices. Note that on Malaga, the average
(std.) location errors in meters when rough localization succeeds for FAB-MAP, EFM, and ours are
3.45(2.16), 3.65 (2.21), and 3.33 (2.08), respectively. Although our method achieves better accu-
racy, it is difficult to draw strong conclusions due to the deficiency in the ground-truth locations. We
believe the improvement in accuracy of our method will be more significant if accurate ground-truth
location tags are available, similar to what we have observed in our KITTI experiments.
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