
ECE 5780 Project Final Report

Vertebrae Localization in Pathological Spine CT

using Random Forest

Hang Chu

May 12, 2015

1 Problem Overview

In this project, we investigate the problem of automatic vertebrae localization
in pathological spine CT images. Input of our algorithm is a 3D spine CT
image, outputs of our algorithm are number of detected vertebrae and their 3D
locations. We are particularly interested in investigating the effectiveness of
random forest, which has recently become popular in the computer vision and
medical image research communities.

2 Clinical Significance

Accurate localization of vertebrae in spinal imaging is crucial for the clinical
tasks of diagnosis, surgical planning, and post-operative assessment.

Reliable vertebrae identification could greatly reduce the risk of wrong-level
surgery. According to [5], wrong-level surgery has become a unique problem in
spine surgery. The consequence of wrong-level spine surgery not only generates
another surgery of the intended level, it is usually also associated with lawsuit
ranging from $62,000 to $1,500,000. This problem can be effectively avoided
with the aid of an automatic vertebrae localization system.

3 Related Work

Automatic vertebrae localization has become a upraising research topic in the
medical image analysis community. Automatic vertebrae localization provides
useful, fundamental analysis for many advanced applications, such as longitudi-
nal spine CT registration [6], which relies on vertebrae localization as the first
step. [1] presents an effective, state-of-the-art vertebrae localization method, it
is shown to outperform previous methods such as [7]. Previous methods nor-
mally rely on statistical models of shape and appearance, which is less robust
compared to the random-forest-based method in [1]. The technique described
in the paper has provided the major inspirations of our method in this project.
Many datasets has been published to accelerate the development of effective
vertebrae localization methods. In [2], a database of 224 annotated 3D spine
CT images is available. In [4], 6 datasets along with challenges on spine CT
images are provided. Random forest has become a popular learning method in
recent years, it is originally proposed in [3] and has been shown to be able to
deal with large amount of complex structured data.

4 Approach & Execution Results

Our method is inspired by the paper of Glocker et al. [1]. [1] presents the state-
of-the-art method in automatic vertebrae localization, where the structures of
vertebrae are learned by a random forest using huge number of densely-labeled

1

Figure 1: Examples of the training dataset. All samples are 3D, this figure only
shows one vertical slice of the image.

3D image patches. Our method in this project follows the idea of [1], despite
not being exactly the same in all implementation details.

4.1 Collecting the training data

We use the dataset provided by [1], which includes 224 3D spine CT images.
Along with 3D spine CT images, the dataset also provides manually labeled
3D positions of vertebrae. In our actual experiments, we decide to use a small
subset of the dataset due to the limit of our hardware resource. We use 9 3D
images as the training dataset, which are shown in Figure 1.

For each 3D image in the training set, we randomly select 100 3D patch
centers. For each 3D patch, we record three types of data:

• 1. Image intensities of the neighboring region. We divide the a 40mm ×
40mm × 40mm cubic 3D region near the patch center into 40 × 40 × 20
voxels, and compute the intensities of voxels by nearest-neighbor interpo-
lation. We concatenate the intensities to form the data vector, which has
dimension of 32000. In total, the size of training data is 9× 100× 32000.

• 2. The label of the nearest vertebra center to the generated 3D patch
center. The set of labels contains the regular 7 cervical, 12 thoracic, 5
lumbar and 2 additional centroids on the sacrum.

• 3. The 3D distance to the nearest vertebra center.

We collect two datasets using the procedure described above. For the first
dataset, the 3D patch centers are generated from the entire space of the 3D
CT image. We denote this dataset by T1, it is used for learning where the
vertebrae are. For the second dataset, the 3D patch centers can be only within
20mm distance to a vertebra center. We denote this dataset by T2, it is used
for learning detailed structures of vertebrae.

2

Figure 2: From left to right: the testing image used; the result after applying
the regression forest F1 where the color blue indicates small distance and red
indicates large distance; the regression result overlaid with the testing image.

4.2 Training using random forest

We use the MATLAB implementation of random forest provided by [8]. It
has two functionalities: random forest for classification, and random forest for
regression. When training the forest, we use 20 trees as recommended in [1]. At
each node in the tree, we split the data using

√
32000 = 179 randomly selected

dimensions in the data vector, as recommended in [3].
We ran training on a normal PC with 4G RAM. We observed that the av-

erage training time of one tree is around 9 seconds, using 900 samples. We also
tried using more samples, but the training time increases significantly (by at
least one magnitude, using 4500 samples, training one tree does not complete
after 10 minutes of running). This is because each sample has 32000 dimensions,
using too many samples exceeds the memory limits, the operating system auto-
matically activates the virtual memory, which is by several magnitudes slower.

4.3 Step 1: rough vertebrae localization

The first step of our system is to roughly find where the vertebrae are, i.e. find
the spinal region from the entire CT image. To do this, we train a regression
forest F1 using T1, where the objective is to regress the 32000 dimensional data
vector to the 1 dimensional scalar of the distance to the nearest vertebra center.
To test the performance, we used a new 3D CT image and densely sampled
3D patches on a vertical slice, i.e. all patch centers of the testing set have the
same x -coordinate. It should be noted that we choose to test on one slice of
the 3D image because even for one slice, the testing data size is 3822 × 32000,
which is near to the memory limit that a normal PC can handle. Testing on the
entire 3D image would possibly demonstrate more convincing results, but the
computational resource needed would be beyond what we have in this project.

Figure 2 shows the testing result. It can be seen that our regression forest
method works quite effectively, most of the the spinal region is found success-
fully. This result met our expectation: as CT images are calibrated, intensities
correspond to the actual substance, and the spinal region has a unique range of

3

Figure 3: From left to right: the ground-truth with colors indicate different
vertebrae; the ground-truth label with our rough vertebrae localization in step
1; the classification result within ground-truth distance-to-nearest-vertebra; the
classification result with our rough vertebrae localization in step 1.

image intensity, so the regression forest should be able to roughly identify the
spinal region easily.

4.4 Step 2: precise vertebrae localization

We apply the second vertebrae localization process only for regions that have
result distance larger than 28mm, when feeding the 32000 dimensional patches
into F1. We have tried two different approaches. The first approach follows the
style of the method in [1]: train a classification forest F2 using T2, where the
class label corresponds to vertebra type, which solves a 22-class classification
problem. Figure 3 shows the execution results.

Apparently from Figure 3, this method does not work well. This is mainly
due to two reasons:

• 1. Insufficient training data. Our training dataset T2 only has 100 patches
for each 3D image. In each 3D image, there are normally 5-20 vertebrae.
This means in our training dataset, we only have 5-20 samples for each
vertebra, that are used to represent the 40mm × 40mm × 40mm region
within the vertebra center. With such insufficient amount of training
data, it is not surprising that random forest does not learn much useful
information.

• 2. Immature feature extraction. In [1], image intensities are not directly
used as features. Instead, the paper mentioned very vaguely that 2000
random features efficiently implemented via integral images are used. This
random feature generation is addressed by [9], without publicly available
source code. In our method, we directly used the 32000 dimensional image
intensity as input to the classifier.

It should be noticed that the two causes are connected. Because of the
second cause, our feature vector is much longer than the feature vector in [1].
Thus, using our method only a limited number of sample patches can be used to
accommodate the memory size of a normal PC, which leads to the first cause.

4

Figure 4: From left to right: the estimated distance image where the color blue
to red indicates small to large distance; the template comparison error map
where the color blue to red indicates small to large error; our final result (blue)
compared with ground-truth (red).

There are two ways to improve the above method. The first is obvious:
implementing the whole random feature generation algorithm described in [9],
and combine it with our method. This is possibly the best way in order to
achieve most improvement. However, doing this would not only be repeating an
already-existing work, but also would demand hundreds hours of coding time.
Thus, it is beyond the scope of a class project (although we think it is a worth
investigating direction for researchers who are dedicated to the area related to
vertebrae localization). We take the second way: modify the method such that
it works in our situation.

We train a regression forest F3 using T2, where the objective is to regress the
32000 dimensional data vector to the 1 dimensional scalar of the distance to the
nearest vertebra center. Then we apply F3 to the testing 3D patch to estimate
the distance from the patch center to the nearest vertebra center, which produces
an estimation of distance-transform image. Next, for each pixel in the estimated
distance image, we compute the sum of absolute difference between the pixels
neighborhood and a square template, where the template records distance in
millimeter to the center. This produces a map of template comparison error.
Finally, we search for local minimums in the template comparison error map.
The minimums are our estimated vertebra locations.

Figure 4 shows results of our method. There are 5 vertebrae in the test-
ing image. Our method successfully identifies 6 vertebra centers, with 1 false
positive. The average error in vertebra center localization is 12.01 ± 7.55mm,
minimum error is 1.33mm, maximum error is 19.50mm. Although our method
is less accurate compared to the state-of-the-art method [1] (7.0mm±4.7mm for
cervical), it is able to produce somewhat useful results with a relatively simple
algorithm.

5

5 Summary

5.1 Dataset

We use 9 3D spine CT images with labeled vertebra centers for training. 2
datasets are collected from the images:

• T1 that has 900 3D patches of size 40× 40× 20, each covering a 40mm×
40mm× 40mm region, randomly sampled from whole 3D image.

• T2 that has 900 3D patches of size 40× 40× 20, each covering a 40mm×
40mm × 40mm region, randomly sampled from regions that are within
28mm to a labeled vertebra center.

We use 1 3D spine CT image with 5 labeled vertebrae for testing. We densely
collected 3822 3D patches on a vertical slice of the 3D image. Each patch is of
size 40× 40× 20 and covers a 40mm× 40mm× 40mm region.

5.2 Method

Our method has the following steps:

• Train two random forests F1 and F2 using T1 and T2 respectively. The
trained forests regresses the 40× 40× 20 to a 1D distance to the nearest
vertebra center.

• For each 3D patch in the testing set, apply F1 and F2 to get d1 and d2.

• For center positions whose d1 ≤ 28mm, compute the sum of absolute
errors of the 2D neighborhood around the center position and a square
template of distance to template center.

• Find local minimums in the comparison result, they are the final result of
estimated vertebra center locations.

5.3 Results

Each training set took 15 minutes for data collection. Testing set took 1 hour
for data collection. Training each random forest took 3 minutes. The running
time of our vertebrae localization algorithm took 3 minutes.

Our method detected all 5 vertebrae in the testing image, 1 false positive
also occurred. The location error is 12.01± 7.55mm.

6 Conclusions

Vertebrae localization in spine CT images is a clinically significant problem
that can be solved by automatic computer image analysis. We demonstrated
a relatively simple, but effective method that is based on random forest. We
conducted a small-scale experiment to show the effectiveness of our method.

6

7 References

[1] B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi, Verte-
brae Localizaton in Pathological Spine CT via Dense Classification from Sparse
Annotations, MICCAI, 2013.
[2] Annotated Spine CT Database for Benchmarking of Vertebrae Localization
and Identificaton, http://research.microsoft.com/en-us/projects/spine/

[3] L. Breiman, Random Forest, Machine Learning 45(1), 5-32, 2001.
[4] 2nd MICCAIWorkshop & Challenge on Computational Methods and Clinical
Applications for Spine Imaging, http://csi-workshop.weebly.com/

[5] J. Hsiang, Wrong-Level Surgery: A Unique Problem in Spine Surgery, Surg.
Neurol. Int. 2(47), 2011.
[6] B. Glocker, D. Zikic, and D. R. Haynor, Robust Registration of Longitudinal
Spine CT, MICCAI, 2014.
[7] B. Glocker, J. Fuelner, A. Criminisi, D. R. Haynor, and E. Konukoglu,
Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-
View CT Scans, MICCAI, 2012.
[8] A. Jaiantilal, Random Forest for MATLAB, https://code.google.com/p/randomforest-

matlab/

[9] A. Criminisi, J. Shotton, and S. Bucciarelli, Decision Forest with Long-Range
Spatial Context for Organ Localization in CT Volumes, MICCAI Workshops,
2009.

7

8 Appendix

This appendix lists the source code that has been written by Hang Chu and
used in this project. Source code for random forest is not listed.

function [set_raw_info] = read_set(set_file_path)

% MATLAB function for reading and formating the 3D image and vertebra labels.

% Author: Hang Chu

% Inputs:

% set_file_path: a .txt file that has format

% sample# xsize ysize zsize xunit yunit zunit

% for example:

% 2805012 512 512 115 0.347656 0.347656 2.5

% Outputs:

% set_raw_info: the 3D images with formats and labels

A=textread(set_file_path);

load(’info -template.mat’);

for ii=1: size(A,1)

ii

info.Filename =[’../../ spine -1/’,int2str(A(ii ,1)),’.raw’];

info.Dimensions =[A(ii ,2),A(ii ,3),A(ii ,4)];

info.PixelDimensions =[A(ii ,5),A(ii ,6),A(ii ,7)];

V=raw_read_volume(info);

L=read_lml ([’../../ spine -1/’,int2str(A(ii ,1)),’.lml’]);

set_raw_info(ii).V=V;

set_raw_info(ii).info=info;

set_raw_info(ii).L=L;

end

end

function [Distance ,Position ,Features] = extract_vectors ...

(set_raw_info_label ,maxalloweddis)

% MATLAB function for extracting 3D patches and recording

% its distance to the nearest vertebra center

% Author: Hang Chu

% Inputs:

% set_raw_info_label: the 3D images with formats and labels

% maxalloweddis: the maximum allowed distance -to-vertebra -center

% Outputs:

% Distance: 900 x 1 distances

% Position: 900 x 3 center positions

% Features: 900 x 32000 image intensities

cube_size =40;

Distance =[];

Position =[];

Features =[];

offset =[];

for z= -20:2:20

for y= -20:1:20

for x= -20:1:20

offset =[offset;x,y,z;];

end

end

end

for ii=1: length(set_raw_info_label)

nowinfo=set_raw_info_label(ii).info;

xrange=nowinfo.PixelDimensions (1)* nowinfo.Dimensions (1);

8

yrange=nowinfo.PixelDimensions (2)* nowinfo.Dimensions (2);

zrange=nowinfo.PixelDimensions (3)* nowinfo.Dimensions (3);

range =[xrange ,yrange ,zrange];

nowL=set_raw_info_label(ii).L;

nowV=set_raw_info_label(ii).V;

for jj =1:100

display ([’Image:␣’,int2str(ii),’,␣Sample:␣’,int2str(jj)]);

while 1

center=rand (1 ,3).*(range -cube_size -4)+ cube_size /2+2;

mindis =10000;

for kk=1: length(nowL)

dis=sqrt(sum((center -(nowL(kk).pos) ’).^2));

if dis <mindis

mindis=dis;

end

end

if mindis <maxalloweddis

break;

end

end

Position =[Position;center];

Distance =[Distance;mindis];

nowdata=zeros(1,size(offset ,1));

for kk=1: size(offset ,1)

nowpos=center+offset(kk ,1:3);

nowx=round(nowpos (1)/ nowinfo.PixelDimensions (1));

nowy=round(nowpos (2)/ nowinfo.PixelDimensions (2));

nowz=round(nowpos (3)/ nowinfo.PixelDimensions (3));

nowdata(1,kk)= double(nowV(nowx ,nowy ,nowz));

end

Features =[Features;nowdata];

end

end

function [Distance ,Position ,Features ,cor2d] = collect1slice ...

(testdata ,xreal ,zratio)

% MATLAB function for collecting all patches in one vertical

% slice for testing

% Author: Hang Chu

% Inputs:

% testdata: one sample with the 3D image , format , and labels

% xreal: x-coordinate of the vertical slice in mm

% zratio: the ratio of z-unit to x-unit

% Outputs:

% Distance: 3822 x 1 distances

% Position: 3822 x 3 center positions

% Features: 3822 x 32000 image intensities

% cor2d: 3822 x 2 2D coordinate on the slice

cube_size =40;

names =[{’C1_center ’},’C2_center ’,’C3_center ’,’C4_center ’,’C5_center ’, ...

’C6_center ’,’C7_center ’,’T1_center ’,’T2_center ’,’T3_center ’,’T4_center ’, ...

’T5_center ’,’T6_center ’,’T7_center ’,’T8_center ’,’T9_center ’,’T10_center ’, ...

’T11_center ’,’T12_center ’,’L1_center ’,’L2_center ’,’L3_center ’, ...

’L4_center ’,’L5_center ’,’S1_center ’,’S2_center ’];

Distance =[];

Position =[];

Features =[];

Classes =[];

9

offset =[];

for z= -20:2:20

for y= -20:1:20

for x= -20:1:20

offset =[offset;x,y,z;];

end

end

end

nowinfo=testdata.info;

xrange=nowinfo.PixelDimensions (1)* nowinfo.Dimensions (1);

yrange=nowinfo.PixelDimensions (2)* nowinfo.Dimensions (2);

zrange=nowinfo.PixelDimensions (3)* nowinfo.Dimensions (3);

range =[xrange ,yrange ,zrange];

nowL=testdata.L;

nowV=testdata.V;

nowLnamenum =[];

for jj=1: length(nowL)

for ff=1: length(names)

if strcmp(nowL(jj).name ,names{ff})

nowLnamenum(jj ,1)=ff;

end

end

end

cor2d =[];

for ii=1:4: size(testdata.V,2)

disp([int2str(ii),’/’,int2str(size(testdata.V ,2))]);

for jj=1:2: size(testdata.V,3)

if ((ii*nowinfo.PixelDimensions (2))>(cube_size /2+3)) && ...

((ii*nowinfo.PixelDimensions (2))<(yrange -(cube_size /2+3))) ...

&& ((jj*nowinfo.PixelDimensions (3)) >(cube_size /2+3)) && ...

((jj*nowinfo.PixelDimensions (3))<(zrange -(cube_size /2+3)))

cor2d=[cor2d;ii ,(jj -1)* zratio+zratio /2;];

center =[xreal ,ii*nowinfo.PixelDimensions (2),(jj -1) ...

*nowinfo.PixelDimensions (3)+ nowinfo.PixelDimensions (3)/2];

mindis =10000;

for ff=1: length(nowL)

dis=sqrt(sum((center -(nowL(ff).pos) ’).^2));

if dis <mindis

mindis=dis;

nowname=nowLnamenum(ff);

end

end

Position =[Position;center];

Distance =[Distance;mindis];

Classes =[Classes;nowname];

nowdata=zeros(1,size(offset ,1));

for ff=1: size(offset ,1)

nowpos=center+offset(ff ,1:3);

nowx=round(nowpos (1)/ nowinfo.PixelDimensions (1));

nowy=round(nowpos (2)/ nowinfo.PixelDimensions (2));

nowz=round(nowpos (3)/ nowinfo.PixelDimensions (3));

nowdata(1,ff)= double(nowV(nowx ,nowy ,nowz));

end

Features =[Features;nowdata];

end

end

10

end

end

function [dense_D_hat] = plot1slice ...

(testdata ,xcor ,zratio ,D_hat ,D_hat_level2 ,cor2d)

% MATLAB function for ploting the estimated distance image , giving results

% of the two regression forests

% Author: Hang Chu

% Inputs:

% testdata: one sample with the 3D image , format , and labels

% xreal: x-coordinate of the vertical slice in mm

% zratio: the ratio of z-unit to x-unit

% D_hat: 3822 x 1 regression result of F_1

% D_hat_level2: 3822 x 1 regression result of F_2

% cor2d: 3822 x 2 2D coordinate on the slice

% Outputs:

% 3 figures will be plotted

% dense_D_hat: interpolated 2D distance image

for ii=1: size(testdata.V,2)

for jj=1: size(testdata.V,3)

img (((jj -1)* zratio +1):((jj)* zratio),ii)= testdata.V(xcor ,ii,jj);

end

end

img=double(img);

img(img >1500)=0;

figure;

imshow(img /1500);

disimg=zeros(size(img ,1),size(img ,2));

[X,Y]= meshgrid (1: size(img ,2),1: size(img ,1));

smallsize1 =(max(cor2d (:,2))-min(cor2d (: ,2)))/16+1;

smallsize2 =(max(cor2d (:,1))-min(cor2d (: ,1)))/4+1;

D_hat_2d=reshape(D_hat ,smallsize1 ,smallsize2);

D_hat_2d_level2=reshape(D_hat_level2 ,smallsize1 ,smallsize2);

corx2d=reshape(cor2d(:,1), smallsize1 ,smallsize2);

cory2d=reshape(cor2d(:,2), smallsize1 ,smallsize2);

dense_D_hat=interp2(corx2d ,cory2d ,D_hat_2d ,X,Y);

dense_D_hat_level2=interp2(corx2d ,cory2d ,D_hat_2d_level2 ,X,Y);

for ii=1: size(dense_D_hat ,1)

for jj=1: size(dense_D_hat ,2)

if dense_D_hat(ii,jj)<28

dense_D_hat(ii ,jj)= dense_D_hat_level2(ii,jj);

end

end

end

figure;

ddh_color=uint8(zeros(size(dense_D_hat ,1),size(dense_D_hat ,2) ,3));

minval=min(min(dense_D_hat));

maxval=max(max(dense_D_hat));

for ii=1: size(dense_D_hat ,1)

for jj=1: size(dense_D_hat ,2)

val=(dense_D_hat(ii,jj)-minval)/(maxval -minval);

ddh_color(ii,jj ,1)= round(val *255);

ddh_color(ii,jj ,2)=255 - round(abs(val -0.5)*2*255);

ddh_color(ii,jj ,3)=255 - round(val *255);

end

end

imshow(ddh_color);

11

showimg=uint8(zeros(size(dense_D_hat ,1),size(dense_D_hat ,2) ,3));

for ii=1: size(showimg ,1)

for jj=1: size(showimg ,2)

showimg(ii,jj ,1)=0.5* ddh_color(ii ,jj ,1)+0.5* img(ii,jj)/1500*255;

showimg(ii,jj ,2)=0.5* ddh_color(ii ,jj ,2)+0.5* img(ii,jj)/1500*255;

showimg(ii,jj ,3)=0.5* ddh_color(ii ,jj ,3)+0.5* img(ii,jj)/1500*255;

end

end

figure;

imshow(showimg);

end

function [pmap ,vets] = localize_vet(dense_D_hat ,disresolution)

% MATLAB function for final veterbrae localization

% Author: Hang Chu

% Inputs:

% dense_D_hat: interpolated 2D distance image

% disresolution: x-unit in mm

% Outputs:

% pmap: the template comparison result

% vets: final vertebrae locations

tempwidth =64;

template=zeros(tempwidth *2+1, tempwidth *2+1);

for ii=1: tempwidth *2+1

for jj=1: tempwidth *2+1

template(ii,jj)=sqrt (((ii -tempwidth -1)* disresolution)^2+ ...

((jj-tempwidth -1)* disresolution)^2);

end

end

pmap=zeros(size(dense_D_hat ,1),size(dense_D_hat ,2));

for ii=1: size(dense_D_hat ,1)

ii

for jj=1: size(dense_D_hat ,2)

if isnan(dense_D_hat(ii,jj))

pmap(ii,jj)= -0.1;

else

xmin=max([1,jj -tempwidth]);

xmax=min([size(pmap ,2),jj+tempwidth]);

ymin=max([1,ii -tempwidth]);

ymax=min([size(pmap ,1),ii+tempwidth]);

datamat=dense_D_hat(ymin:ymax ,xmin:xmax);

tempmat=template ((tempwidth +1-(ii-ymin)):(tempwidth +1+(ymax -ii)), ...

(tempwidth +1-(jj-xmin)):(tempwidth +1+(xmax -jj)));

resultmat=abs(datamat -tempmat);

thenumber=sum(sum(1-isnan(resultmat)));

resultmat(isnan(resultmat))=0;

pmap(ii,jj)=sum(sum(resultmat))/ thenumber;

end

end

end

imshow(pmap/max(max(pmap)));

vets =[];

for ii=1: size(dense_D_hat ,1)

ii

for jj=1: size(dense_D_hat ,2)

xmin=max([1,jj -30]);

xmax=min([size(pmap ,2),jj +30]);

ymin=max([1,ii -30]);

12

ymax=min([size(pmap ,1),ii +30]);

datamat=pmap(ymin:ymax ,xmin:xmax);

datamat(datamat == -0.1)=100;

if pmap(ii,jj)== -0.1

continue;

end

if dense_D_hat(ii,jj)>28

continue;

end

if pmap(ii,jj)== min(min(datamat))

vets=[vets;jj ,ii];

end

end

end

hold on;

for ii=1: size(vets ,1)

plot(vets(ii ,1),vets(ii ,2),’rx’);

end

hold off;

end

13

