Intermediate Report Il
Marauder's Map, CS 5412

Haotian Pan(hp343), Yize Li(yl2376), Hang Chu(hc772)

April 13, 2014

1. Summary of Progress in Intermediate Report |

In the last report, we have already made a game able to run. Several players could join one
game instance and can only move in the area and observe each other moving. The game is
played on the web browser and thus can be played both using portable device and computer.
The game turned out to be fast in response, and have a special mechanism to achieve server
replica, e.g. to continue the game when one server crashes down.

2. Current Status
In this part, we are going to show our completed works since last report in details.

2.1 Improved Game Logic

As can be seen in our previous report, our game was a tank game. This is not the outcoming we
had wanted for a Human vs. Zombies game, though the underlying mechanism is the same. To
improve this aspect of our project, we implemented more details of the game logic. Overall
speaking, there are 3 major changes:

e a. We added two types of players: human players and zombie players.

e b. We added a “war fog” effect, such that a play can only see surrounding environment
instead of the whole map.

e c. We implemented the attack function, so now players from different sides can kill each
other.

2.2 Robust Data Replicating Strategy

In our first attempt, we stored players’ information in every client’s disk, and let the client send
the stored information to server in order to retrieve a game. We were also using JSON files to
record these data to server. However, this turned out to be a bad way to do server replication
since players may cheat by sending a modified version of data to server while retrieving a game.
Therefore, we have decided to use the memcached technique.

2.3 Load Balancing with Router



Users can choose which game server to go to manually on a webpage by clicking the
corresponding link or connect to the game server assigned to them by the router by clicking a
special link. We have already implemented a random router and a round-robin router, but both
are not satisfying enough.

2.5 Errors fixed

In the last report, we made every player send their data including ID, location, velocity and
orientation back to the new leading server which just took up the job of running game logic and
communicating and all the other tasks that the previous leader was doing before crash down. It
turns out to be a bad idea, because the consistency can be easily violated if players take
advantage of this and send incorrect data to the new leader. Thus we adapted our technical
approaches by adopting memcached to store user data and provide easy and safe access to
data stored to all the servers in the same group.

3. Milestone Status

In this section, we report the status of our previously planned milestones: finished before
Intermediate Report |, , , hot started.

3.1 Milestone 1

Create the game map

Create game GUI

Traditional single server-client framework
Testing maximum response speed

3.2 Milestone 2

e Improve communication efficiency

In Intermediate Report | this is only partially finished. In our current implementation, we set
multiple servers and share/replicate game data using memcached. We also implemented
protocols of assigning idle server into service when previous leader server fails, this protocol is
able to recover game data by retrieving from memcached.

3.3 Milestone 3

In our Intermediate Report | this is partially finished. We now finished this by using the
memcached approach described above.



In our Intermediate Report | we marked this as finished. However, this was not actually finished
as at that time we did not have data replication protocols, all game data was stored locally and
game cheating would be a severe problem. (We would like to thank our TA Stavros Nikolaou for

pointing out and explaining this.) We now have data replicating implemented.
e Maintain 100 ms delay limit

3.4 Milestone 4

4. Demonstration

Figure 1. Improved game logic. We added two types of player, “war fog”, attacking and killing.

D:\GitHub\ZombieCloud>
D:\GitHub\ZombieCloud>
D : \GitHub \ZomhieCloud>
D : \GitHub \ZomhieCloud>
D: \GitHub \ZomhieCloud>
D : \GitHub"\ZomhieCloud>
D:\GitHuh\ZombicCloud>
D:\GitHub\ZombieCloud>
D:\GitHub \EombieCloud>
D : \GitHub \ZomhieCloud>
D : \GitHub \ZomhieCloud>
D: \GitHub \ZomhieCloud>
D: \GitHuh\ZombieCloud>
D: \GitHuh\ZombieCloud>
- is listening

[disconnected
[Connections
[t is B

count: 1

Bl C:\Windows\system32\emd.exe - node masterjs

.0’ fanily:
1

*, Family:

@ C\Windows\system32\cmd.exe

Dz~GitHub“\ZombieCloud>
Dz \GitHub ZombieCloud>
D:2\GitHub ZombieCloud>
Dz \GitHubh“ZombieCloud>
Dz \GitHub“\ZombieCloud>
D:~\GitHub"ZombieCloud>
Dz ~\GitHub“\ZombieCloud>
D:z5\GitHub“ZombieCloud>
Dz2\GitHub ZombieCloud>
Dz \GitHub“ZombieCloud>
D:\GitHub“ZombieCloud>
Dz \GitHub“\ZombieCloud>
Dz ~\GitHub“\ZombieCloud>
Dz~GitHub“ZombieCloud>node uworker.js
connection successful

i

Listening for connections on port 8001

node master.je

*TPv4’. port: 8181 >

1 spawned a zombie/humant
‘IPu4’, port: 8181 >
2 spauned a zombie/human?

Logged in 127.8.8.1;5 currently 3 users.

3 spauned a zombieshuman?
~c

Dz \GitHub“\ZombieCloud>

Logged in 127.8.8.1; currently 1 users.

Logged in 127.8.8.1; currently 2 users.

=ree

B C:\Windows\system32\cmd.exe - node worker.js

[D:\GitHuh ZomhieCloud>

D: \GitHuh“\ZonhieCloud>

D: \GitHub“ZombhieCloud>

D: \GitHub\ZombhieCloud>

D: \GitHub\ZonbieCloud>
D:\GitHub\ZomhieCloud>

ID:\GitHuh ZomhieCloud>

ID:\GitHuh ZomhieCloud>
D:N\GitHub“ZonhieCloud>

Dz \GitHub\ZombieCloud>

D: \GitHub“ZombieCloud>node worker.js
connection successful

2

i

Listening for connections on port 8881
Logged in 127.8.8.1; currently 1 users.
User 3 Data retrieved?

3 spawned a zonmhie hunan?

Logged in 127 1; currently 2 users.
2 spawned a =

Logged in 127 15 currently 3 users.
User 1 Data retrieved?

1 spawned a zonmhie hunan?

Figure 2. Server running screenshot. Master server (left) assigns an idle worker server (right) as
the new leader server when previous leader server (middle) fails. The new assigned leader is
able to recover user data to keep consistent user experience.



