Intermediate Report |

Mauraders Map, CS 5412
Haotian Pan(hp343), Yize Li(yl2376), Hang Chu(hc772)
March 11, 2014

1. Accomplished Goals

1.0 Introduction
We have basicly followed the milestones proposed before, but have also made some
changes to our schedule.
The figure below shows our structure of the cloud we are going to design in this project.
(1) We assume a router who is in charge of assign connecting clients to different
leaders. In this case, the router is assumed to be absolutely stable, and it is also doing
the load balancing as well.
(2) We use masters to manage server groups, and any group consists of three mutually
replicated servers, one leader and two workers. This master is delivering some
information(not all) of clients between leader and workers. For instance, we are planning
to send client IDs in the crashed leader server to its two replica worker servers, to ensure
dropped clients will get higher priority(e.g. by locks) when reconnecting if there are other
new clients trying to connect at the same time.
(3) At bottom leverl we use three servers who are actually generated from the same file
to do the replica. Upon launched, they will all connect to the master and one of them will
be the leader and all the coming clients will connect to it. During the process of the game,
every leader and worker will share the same data of the clients with the help of the
master.

Master

Leader Warker Warker

Leader |« Worker [<—| Worker

Leader Waorker Worker

1.1 Milestone 1

111

1.1.2

1.1.3

1.1.4

Discription: According to our game model, the map is 2D. It can be either manually
crafted, or can be retrieved from real-world map such as Google Maps.
Current status: We completed the game model, with a 2D manually crafted map.

Description: We will implement a webpage-based GUI for gamers, which includes: a

map display with real-time player status, buttons for taking actions such as move or
attack (we will also try locating by GPS to substitute manual moving control).

Current status: We completed the GUI, with a BattleCity-like interface. We plan to change
the tank images into zombies/humans and redefine the fire range, though we believe the
how game itself looks does not matter in this project.

Description: We will build a simple gaming framework, using only one server. Every user
is connected to this server.

Current status: We completed a single server-client framework. The client access the
game via a web browser, the communication between the client and the server follows
the http protocol.

Description:We will test the real-time performance of the simple framework.

Current status: We have not evaluated the response speed in milliseconds but the
response is quite fast, with stable instantaneous performance where human eyes could
not detect delay.

1.2 Milestone 2 (Partially)

1.21

1.2.2

Description: In the previous stage we only test response speed, in this stage we will
improve communication efficiency to meet the 100 ms requirement.

Current status: Our current implementation is quite efficient with response time far less
than the 100 ms requirement, so we consider this goal accomplished.

Description: Only one server cannot be called a cloud. We will implement strategies to
enable our framework working at multiple servers. Different game instances will be
hosted on different servers.

Current status: Our framework now allows more than one server group, we divide
existing servers into a master and a group of workers. The master can assign jobs to an
idle worker when the previous active server crashes. We consider this goal partially
accomplished as we have not implemented the router server for assigning players into
different master-worker groups, now we just store the ip addresses of the server groups
in the clients, and they will go through the ip addresses list to find a server group which is
not heavy loaded.

1.3 Milestone 3 (Partially)

1.3.1
Description: In this case, we will duplicate the data of each server to two other redundant
servers. Changes in any one of the servers would cause the other two to synchronize.
This ensures that clients would not receive bad data or crash after one server crashed.
Current status: Our design of error tolerance is based on a master-leader-worker
structure for servers we constructed for the servers. Every time a game instance is
created, the master sever will assign one of the servers in the backup list to become the
new leader and take charge of game holding. When the master crashes, one of the
workers will take over immediately and become the new master. We have implemented
the master-leader-worker structure but have not completed the worker fork up master
process, so we consider this goal partially accompllished.

1.3.2
Description: For this part, we may actually implement with the isis tool. We may come
across some protocols to guarantee consistency between clients.
Current Status: We completed the process that the master assigns the new leader from
the idle worker servers, thus when the current serving leader sever crashes a new leader
will be assigned and put into work immediately. In this way, clients witness no fluctuation.

1.3.4
Description: Assume that we have made several changes from milestone 4.2.1 in order
to meet the requirements, we still want to check and maintain a 100 ms delay limit.
Current Status: Our current implementation is able to maintain the delay limit.

2. Things to do next

We are going to get these things done in priorities.

2.1 Clients reconnection (High Priority)
Up till now, if the leader servers goes down, one of the leader server will take over and
make sure no clients will be affected or even dropped from the game. But reconnection
should be done in a faster and better way so that no players will sense an apparent delay
and reconnection should not be bothered by new players who are trying to join the game
at the same time.

2.2 Worker replica (High Priority)
In our current version, the user data are stored locally. When a new worker is assigned
as the leader, the user data are sent from clients. This is not a sophisticated strategy, we
intend to improve this by storing a back-up user data in the master server.

2.3 Router-load balance (High Priority)
As the number of players grows, only one master-worker group of servers is not enough.
We should make our system scalable while balancing load. We are going to use a router
to do that favor in the coming weeks.

2.4 Game logic (High Priority)
Up till now our game looks just like BattleCity, and neither do we have walls nor can we
fire. We can only move our own tank and see other tanks moving. This is enough as
some kind of “game” that we can test our server stability and replicating with, but it is still
far from playable. We will change the game into a human vs. zombie appearance, with
walls and attacking available.

2.5 Group (Medium Periority)
We have considered a kind of possibilty that our master, leader and worker servers could
actually form into a group. This group can have no hierarchy when initialized, but should
automaticly nominate a master, a leader and other workers when corresponding events
happen. After that, the group members keep communicating with each other by
broadcasting information throughout the group. This idea is inspired by the working
mechanism of Isis2.

2.6 Worker fork up master, master fork up worker (Low Priority)
In the current model, we have not consider cases where a master could crash down. If
that happens, the current leader and workers should somehow generate a new master.
This can be done by immediately promoting one leader or worker to a master, or finding
another existing master, or even launch a new master.

2.7 Master replica (Low Priority)
As mentioned above, we have not found a way to do master replica yet. Maybe we should
reconsider the design of our system, because using something new like a “master” to
achieve and manage replicas seems to bring us repeated questions.

3. Presentation
Some of our work are presented below:

The simple game screen

ZombieCloud — bash — 65x24 ZombieCloud — node — 67x24
Last login: Thu Mar 13 17:45:03 on ttys@ee Last login: Thu Mar 13 17:45:28 on ttys@ol
You have mail. You have mail.
Yizes-MacBook-Pro:~ yizeli$ cd /Users/yizeli/ZombieCloud Yizes-MacBook-Pro:~ yizeli$ cd /Users/yizeli/ZombieCloud
Yizes-MacBook-Pro: ZombieCloud yizeli$ node worker.js Yizes-MacBook-Pro:ZombieCloud yizeli$ node worker.js
connection successful connection successful
1 2
Listening for connections on port 8801 1
Logged in 127.0.0.1; currently 1 users. Listening for connections on port B8@@l
k spawned a car! Logged in 127.@.@.1; currently 1 users.
Logged in 127.0.8.1; currently 2 users. k spawned a car!
| spawned a car! Logged in 127.8.8.1; currently 2 users.
Yizes-MacBook-Pro:ZombieCloud yizeli$ L spawned & car!

The consoles showing one server crashed down and another took over

