Final Report

Marauder's Map, CS 5412
Haotian Pan(hp343), Yize Li(yl2376), Hang Chu(hc772)

1. Introduction

1.1 Motivation
To provide a distributed gaming platform for Zombie City and other similar online
webpage games for any portable devices:
a) Simple framework on web page for real-time interactive multiplayer games.
b) Service guarantees for availability, fault-tolerance, speed.

1.2 Main content

1.2.1 The cloud framework

Databasel Database2 Deﬁabase?;

asger"l' aster2 Master3 asterl aster2 Master3
Qader gorker gorker Leader »Eorker Eorker

~__ Server Groupl Server Group2

Routerl RQE

A
.'|‘_

lhi\ !H\ IH\ IH\ H\ l 1

IJsers

Figure 1. The framework of our cloud game hosting system

Figure 1 shows an overview of our cloud framework. From Figure 1 it can be seen
that users can enter our cloud system through routers. Our system supports more
than one routers, so that even one of them fails the game will be still functioning if the

user visit other routers. In an more practical situation, a DNS-alike structure can be
used to wrap all routers into one unified domain name, but this is already beyond the
concern of the cloud system itself so we did not implement it.

The next level of our system are server groups, our routers will automatically balance
the load and assign users to different groups. Each group contains three types of
servers: master server, leader server, and worker server. The master server
oversees the whole group, we have more than one master servers in one group
such that even the current working master fails, other sleeping masters will
automatically take its place, guaranteeing the consistency of the game. The leader
server is the server that hosts the game. The worker servers will remain sleeping
until a leader fails and receives an instruction from the current master to be the new
leader. Our group structure guarantees that when single server (of any type) failure
occurs, the game still continues as usual.

The third level of our system are databases. The leader server will report its own
potion of user data to the databases. When a leader fails and a worker becomes
the new leader, the worker will first retrieve the part of user data it needs to run the
game from the database. To guarantee the reliability of our cloud system, we also
implemented multiple databases such that when one of them fails, the system still
functions normally.

1.2.2 A simple game for testing

Figure 2. Screen captures of the game we use for testing our cloud framework.

Figure 2 shows screen captures of the running game. We divide all players into two
types: zombie and human. Players can move around and kill other players that
belongs to the other fraction.

It should be noticed that although our game design is fairly simple, but it's enough to
include all types of basic gaming requests (spawning player, loading map, receiving
and updating player data). We set our focus on the cloud framework, rather than
waste too much time on implementing a game that just looks fancier but doesn’t
change much essentially.

1.3 Final status
As a high-level summary of our project, we have designed and implemented a cloud
architecture, which has good scalability and robustness. Our cloud is capable of
handling failures of any possible single server, and can even handles certain failures
of more than one server. We also implemented a simple but playable game, to test
and demonstrate our cloud framework.

We have achieved all the goals that we have proposed previously.

2. Approach

In this section, we will describe our project implementation in detail. We will focus on
discussing our approach of realizing our own cloud system, and also introduce the
techniques we used for our example testing game.

2.1 A cloud system with high reliability and fault-tolerance

Figure 1 shows the framework of our cloud system. There are several important
issues we want to introduce about our cloud system. In the rest of this subsection,
we will first explain the key design factor in our system: the master-leader-worker
server group strategy. Then we introduce our design of assigning a new leader from
workers, and the master replication strategy, which renders our server group
robustness towards failure of any type of single node. After that, we will also
describe our approach for implement the databases and routers, which are also
robust to single node failures.

2.1.1 The master-leader-worker server group

The simplest way to host a game, is to use just only one server and let it handle
everything. Obviously, this is not a good idea if we want our game hosting system
stable and scalable. Inspired by Azure and Zookeeper, we decided to implement a
master of the group: a server that oversees the group. Except the master, there are

3

two other types of servers: the server that is actually spinning and processing game
data, which we call the leader; the servers that are sleeping and are standing by to
take the leader’s position once the leader fails, which we call the workers. The
master coordinates the group by constantly check the leader, once it detects the
leader is no longer working, it immediately promotes a available worker to be the
new leader. The promoted worker will do two things after it receive the master’s
order: first it checks which users are connected to the previous leader, second it
retrieves data of those detected users from the database and start hosting. When a
leader hosts a game, it receives and broadcast user status change to all connected
users, and in the same time save the changes to the database. Furthermore, a
group can have more than one master. Only one master will be in charge and the
others will remain sleeping but keep an eye on the working one, such that one of
them can take up the place once the current master fails.

In our framework, there are no upper limits for: 1. number of workers one group can
have, 2. number of backup masters one group can have, and 3. number of groups
the entire system can have. Those are all signs of high scalability of our cloud
system. There is a unique leader among all the workers in a group. This is because
for an application like our online instant battling game, users submit operations and
receive data in high frequency. Thus makes it not a wise choice to spread users to
different workers, as the communication and data passing among workers would be
fairly heavy and time consuming.

2.1.2 Leader election from workers

—ee

/ worker A

worker B
master ®

Figure 3. Diagram of promoting a worker to be the new leader

I

|

worker C

|

worker D

|

We now introduce the strategy we use to elect a new leader from workers. There
are already some existing solutions to this problem (with different presumptions),
such as the Chang-Roberts algorithm’, the Franklin’s algorithm?, the
Dolev-Klawe-Rodeh algorithm? for ring election, and the tree election algorithm?.
However, what we want for our system, is a simple, robust, and efficient solution for
election. Thus we let another process, the master, to hold a global logical lock and
choose the worker from the queue that has the highest rank to be the new leader.
The logical locks is a number that increases when a worker connects to it or upon
worker disconnection/failure..

2.1.3 Master replication

[master 1 }—[master 2 }—[master 3]

worker worker worker

Figure 4. Diagram of master backup strategy

With the above implementations, our server group is able to handle single point
failure of leader and worker. To further extend the group’s robustness and make it
able to continue serving under single point failure of the master, we use a
triple-master framework. We set up three master servers when the group initializes,
before any worker starts. The three masters follow the following protocols:

' Ernest Chang; Rosemary Roberts (1979), "An improved algorithm for decentralized extrema-finding in
circular configurations of processes", Communications of the ACM (ACM) 22 (5): 281-283,
doi:10.1145/359104.359108

2 Franklin R. On an improved algorithm for decentralized extrema finding in circular configurations of
processors[J]. Communications of the ACM, 1982, 25(5): 336-337.

3 Dolev D, Klawe M, Rodeh M. An< i> O</i>(< i> n</i> log< i> n</i>) unidirectional distributed algorithm for
extrema finding in a circle[J]. Journal of Algorithms, 1982, 3(3): 245-260.

4 R. G. Gallager, P. A. Humblet, and P. M. Spira (January 1983). "A Distributed Algorithm for
Minimum-Weight Spanning Trees". ACM Transactions on Programming Languages and Systems 5 (1):
66—77. doi:10.1145/357195.357200

http://www.google.com/url?q=http%3A%2F%2Fportal.acm.org%2Fcitation.cfm%3Fid%3D359108%26dl%3DGUIDE%26coll%3DGUIDE%26CFID%3D66938712%26CFTOKEN%3D59343102&sa=D&sntz=1&usg=AFQjCNHKWvuz0AM1R8T1rRQjCC2KfB6C8A
http://www.google.com/url?q=http%3A%2F%2Fportal.acm.org%2Fcitation.cfm%3Fid%3D359108%26dl%3DGUIDE%26coll%3DGUIDE%26CFID%3D66938712%26CFTOKEN%3D59343102&sa=D&sntz=1&usg=AFQjCNHKWvuz0AM1R8T1rRQjCC2KfB6C8A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDigital_object_identifier&sa=D&sntz=1&usg=AFQjCNECl8qk62MeuFtlicLakNs338eojA
http://www.google.com/url?q=http%3A%2F%2Fdx.doi.org%2F10.1145%252F359104.359108&sa=D&sntz=1&usg=AFQjCNEAnWKNUIgKPb-lC7mlZ-GPB9r2Fw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRobert_G._Gallager&sa=D&sntz=1&usg=AFQjCNG7SbQn2LxoEls_5H7zyr74VIaU-A
http://www.google.com/url?q=http%3A%2F%2Ftheory.csail.mit.edu%2Fclasses%2F6.852%2F05%2Fpapers%2Fp66-gallager.pdf&sa=D&sntz=1&usg=AFQjCNFtjxObuEt_54aLu61Li58QIHRnyw
http://www.google.com/url?q=http%3A%2F%2Ftheory.csail.mit.edu%2Fclasses%2F6.852%2F05%2Fpapers%2Fp66-gallager.pdf&sa=D&sntz=1&usg=AFQjCNFtjxObuEt_54aLu61Li58QIHRnyw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDigital_object_identifier&sa=D&sntz=1&usg=AFQjCNECl8qk62MeuFtlicLakNs338eojA
http://www.google.com/url?q=http%3A%2F%2Fdx.doi.org%2F10.1145%252F357195.357200&sa=D&sntz=1&usg=AFQjCNEApV8NskR1U6id6t5RjH0gsYWiwA

1. Master1 has the highest rank, then master2’s, and master3 has the lowest rank.
All of them know others’ ranks.

2. Master1 will turn itself the actually working master when it detects master2 or
master3 connects to it successfully. Master2 and master3 will remain sleeping
during master1 works.

3. Master2 will turn itself the working master server when it losts connection with
master1 and receives a message from master3 saying that master1 is lost.

4. A working master quit itself when it finds itself being the only left master.

5. The working master is responsible for providing the address of the leader server
to clients.

2.1.4 Database replication

We choose MongoDB 2.7.6 to be our ultimate database to store player’s
information on disks, which includes player’s name, location, orientation, live/dead
flag and the total distance that player has walked. We send these data to three
different databases located in distinct areas every 20ms (the update rate can be
adjusted according to the quality of the network). Basically, setting update rate
contains a trade-off between more recent game records and less network
congestion. Since we are sending the data very rapidly, we do not consider
consistency of the game records in those databases at one certain time as long as
most of the time the databases will get newer consistent data very soon. Note that
the storage can also be extended by MongoDB itself, since MongoDB already
provides data replication scheme.

When something bad happens, e.g. a worker goes down and a player want to
retrieve from the game, the system will try to retrieve players’ data from these three
MongoDBs. Again, due to the very fast recording of game data, we assume
MongoDBs available at the time of retrieval should include approximately(most of
the time exactly) the same data for a certain player. This simplifies the consistency
problem and guarantees a faster response and a better feeling to players. In our
scheme, we first try to retrieve data from one MongoDB, if this fails, we then try to
reach our second MongoDB, and goes on until the last MongoDB. Though this
retrieving strategy of ours seems quite intuitive, it works quite well. Also we want to
stress that a more sophisticated retrieving strategy can be easily added to our
current one. Finally the player will be dropped out only when all MongoDBs fail. In

most of the cases, our first attempt will succeed, thus making the game immediately
able to continue.

2.1.5 Router replication

Now we have introduced all replication/backup strategies except for the router. As a
matter of fact, our router is self replicable due to our design of the framework. This is
because in our framework, the router has only two functions: 1. balancing the overall
load by redirecting newly connected users to different server groups, 2. send the
html and static script files used in the page to the users’ web browsers. Thus the
router does not handle actual game data stream and everything it involves are
static. That means in our framework, routers can be replicated by simply copying the
related script files. Different servers have different ip addresses, they can be unified
into a certain domain name by any DNS protocol. We consider DNS as another
issue and beyond the scope of our cloud system, so it is not implemented in our
current version.

2.1 A webpage-based instant battling game

As we have mentioned in Section 1, we did not put too much energy on making the
game look fancy. We only seek a minimal, however, general game example that can
be used for testing, evaluating, and demonstrating our cloud system. It should also
be noted that though our game does not have the best visual effect, the amount of
work needed to implement such a minimal game from scratch is still considerable.

To guarantee our game’s availability in different platforms (Windows pc, Linux,
Android, ios, etc.), we choose to implement our game in a webpage
(html+javascript). Thus any device that has a html5-available browser installed is
able to play our game.

The game webpage has two functionalities: 1. detect the users action, and send this
action to the cloud system (i.e. the leader server of the the group the router has
chosen for this user). 2. receive new game status and paint the game according to
the received status. We implemented this in a script file and it will be loaded
automatically to the user’s browser when the user visits the html file.

In the current version of our game, we divide all users into two types randomly:
zombie and human. All the users are alive initially, they can move around and only
have the adjacent area visible, the rest of the map will be covered by a “war shade”.
Users can also attack by pressing the spacebar, the visual effect of attacking is a
yellow rectangular (it might look ugly, but the point is it works!). If there is any enemy

7

players in the attacked region, then she will be marked as killed. We also added
another attribute for every players: the total walked distance. The total walked
distance is not used in the game, but we implement it as an example of permanent
user data, so if anyone wants to extend the game, making users having levels,
experiences, items, armors, or weapons, they can follow our implementation of
walked distance.

3. Project Progress

3.1 Milestones

3.1.1 Milestone 1

a) Create the game map
According to our game model, the map is 2D. It can be either manually crafted,
or can be retrieved from real-world map such as Google Maps.

-We seeked advice from our TA, as he said: "focus on the cloud, the game
doesn’t matter”, so we use a manually crafted map.

-Completed in Intermediate Report | (IR1).
b) Create game GUI
We will implement a webpage-based GUI for gamers, which includes: a map
display with real-time player status, buttons for taking actions such as move or
attack (we will also try locating by GPS to substitute manual moving control).

-Same as the previous one, the cloud is the point, game is only for testing.
Thus we don’t include the GPS feature (though this can be easily added).

-Completed in IR1.
c) Traditional single server-client framework
We will build a simple gaming framework, using only one server. Every user is
connected to this server.

-Completed in IR1.

d) Testing maximum response speed
We will test the real-time performance of the simple framework.
-Completed in IR1.
3.1.2 Milestone 2

a) Improve communication efficiency
In the previous stage we only test response speed, in this stage we will improve
communication efficiency to meet the 100 ms requirement.
-Completed in IR1.
b) Multi server support
Only one server cannot be called a cloud. We will implement strategies to
enable our framework working at multiple servers. Different game instances
will be hosted on different servers.
-Completed in Final Report.
c) Load balancing
We dont want to exhaust one server while other servers are barely used, so we
will design and implement strategies for assigning servers, such that the work
will be distributed to servers averagely.
-We use the router to balance the load globally, as described in Section 2.
-Completed in Final Report.

3.1.3 Milestone 3

a) Error tolerance (replicating servers)
In this case, we will duplicate the data of each server to two other redundant
servers. Changes in any one of the servers would cause the other two to syn-

chronize. This ensures that clients would not receive bad data after one server

crashed.

-We tried multiple strategies for this. We first tried just storing the data in the
user, and a new server retrieving the data from all users, this will arise the
problem of game cheating so we gave it up. We then tried shared json file,
memcached, and MongoDB, and finally set up to use MongoDB for its
stability.

-Completed in IR2.
b) Clients should witness changes in a consistent way
For this part, we may actually implement with the isis tool. We may come
across some protocols to guarantee consistency between clients.

-The above paragraph is from our initial proposal. We do have considered
using Isis2 for realizing this, and we admit that Isis2 is a very powerful and
robust solution. However, we think it would be more interesting if we
implemented our own protocols. Certainly, our protocol won'’t be as powerful
as Isis2, but at least it works and it is able to provide the features we want.
We gained a lot of valuable experiences from the process.

-Completed in IR2.
¢) Maintain 100 ms delay limit

Assume that we have made several changes from previous milestones, in order to
meet the requirements, we still want to check and maintain a 100 ms delay limit.

-Completed in IR2.
3.1.4 Milestone 4

a) Recovery protocol for failed server replicas
We will ensure that the recovered replicas get all the information that the current
operational replicas have to keep consistency.

-We use a MongoDB-based database and the worker election strategy to
realize this. Detailed descriptions can be found in Section 2.

-Completed in Final Report.

10

b) Improve efficiency
We then will try to decrease the delay in response as possible as we can.

-This can be done by adjusting the updating rate of the leader servers to the
database.

-Completed in Final Report.
c) Adjusting gaming model
Making the game funnier and more vivid to play with.

-Completed in IR2.

3.2 Other attempts

3.2.1 JSON files

We had been using JSON files to store players’ data. Basically, we transformed
every player’s information into a json object and then write it to the disk frequently.
When retrieving game, we read the json file and transform it back into an object
containing the player’s location, orientation, live/dead flags....This finally turned out
to be a naive way to store data. The main problem of this is that we could not write
robust code by ourselves to deal with large amount of queries, modifications and
insertions to json files. Later on, we decided to use MongoDB instead.

3.2.2 Memcached

We also explored using memcached for data replication. We expected memcached
to be able to share and replicate data automatically among machines, but this
turned out to be not true and what memcached can provide is just a distributed hash
table. There was a replicating-enabled version of memcached called repcached,

but the project had been closed. After all these attempts, we decided to use
MongoDB.

4.Demo Plan

4.1 Game interface and basic logic

We would like to show on the final presentation that how our game looks like and
how could players play the game.

11

4.2 Fault tolerance for leaders/workers

We would like to show on the final presentation that our system will not be affected
when the leader or a worker goes down.

4.3 Fault tolerance for masters

We would like to show on the final presentation that our system will not be affected
when a master goes down.

4.4 Fault tolerance for databases

We would like to show on the final presentation that our system will not be affected
when a database crashes.

4.5 Fault tolerance for routers

We would like to show on the final presentation that our system will not be affected
when a router goes down.

12

5.Poster

Yize Li (yl2376@comell ed

Cloud System for Marauder’s Map
CS55412 Course Project, Spring 2014

), Haotian Pan (hp343@comell.ed

), Hang Chu (hc7 72@comell edu)

Motivation

We want to provide a cloud gaming platform for
Zombie City and other similar onfine webpage games
for any portable devices:

&) Simple framework on web page for reaktime
interactive multiplayer games.

b} A cloud game hosting system that guarantees
availabity, fault-tolerance, and spesd.

The cloud system
- e .

Users can enter our cloud system through routers.
‘Qur system Suppors more than one routers.

The basic unit of our system are server groups. Each
group contsins three types of servers: master server,
leader server, and worker server. The master server
oversees the whole group. The leader serveris the
server that hosts the game. The worker servers will
remain sleeping until 2 leader fails and receives an
instruction from the cument master to be the new
l=zdar

‘We implemented a multiple database.
With our designed cloud system, the game hosting

service won't be affected under any type of single
point failure.

We divide 3ll players into two types: zombie and
human.

Players can move around and Kill other players that
belongs to the other fraction.

The game is minimal but it inchudes all factors a more
advanced game should have. New gaming featurss
can be easily added.

e (D

JUUE

The master holds 3 global logical lock and choose the
worker from the queus that has the highest rank to be
the new leader.

0 mongoDB mongoose

We usetripple MongoDBs to guarantee the reliability
of the database level.

Inthe retrieving phase, we try retnieving from
MongoDBs one by one until succesd. This guarantees
shori response time.

Our framewerk also supports multiple servers. The
router has only two functions: 1. balancing the overal
load by redirecting newly users to diffs
server groups, 2. send the html and static script files
used in the page to the users’ web browsers. The
router does not handle actual game data stream and
everything it involves are static. Routers can be
replicated by simply copying the relsted script fil
Different servers have different ip addres 5

[M‘I]—[n-d-?]—{MB]

1. Mastert, 2,3 have ranks 1,2,3.

2. Masterl will tum itself the actually working master
when it detects master2 or masterd connects toiit
successfully.

3. Master2 will tum itself the working master server
when it lost connection with master] and receives a
message from master? saying that mastert is lost.

4. Aworking master quit itseff when it finds itself being
the only left master

5 The working master is responsible for providing the
address of the leader server to clients.

[1] nodejs.org!

Contact information

Yiee Li, yl2376@comell. edu
Haotian Pan, hp243@cornell. edu
Hang Chu, heTT2@cornell. edu

Acknowledgements

We would fike to thank Prof. Kenneth Birman and our
TAs Stavros Nikolsou, Theodoros Ghountouvas for
theirexcellent lectures and helpful suggestions

13

