
Homework 3 Report, CS 5220, 2014 Spring

Lingnan Liu, Sheng Wang, Hang Chu, Jilong Wu, Mohammed sameed Shafi

March 28, 2014

1 O(n) time

We tested our code with different h. The number of particles can be calculated from h as

nparticle = (1.3h)3

The run time is shown in Table 1. We use 100 steps in each frame.

Table 1: Timing results (4000 time steps) with different mesh sizes and different processor numbers.
h 0.5 0.4 0.2 0.1 0.05 0.04 0.02

nparticle 8 27 216 2197 17576 32768 274625
secperframe(serial) 0.00042 0.00076 0.0097 0.081 0.43 1.1 36
secperframe(parallel) 0.0011 0.0016 0.010 0.036 0.21 0.55 27

The run time is also shown in Figure 1. From Figure 1, it can be seen that our serial code and
parallel code run in O(n) time. Also, it can be seen that the parallel code runs faster than the serial code
unless the number of particles is extremely small, in that case the overhead would be larger than the
computation time and thus the parallel code would be slower. It should be noticed that as the Z-Morton
encoder we used has only 4 available digits, so for the last two columns in Table 1 when h is small the
code overflows, particles that should belong to different bins are mapped to the same hash entry. This
explains why the run time is a bit longer than O(n).

Figure 1: Run time of our serial code (blue curve) and parallel code (red curve) with different numbers
of particles. Our code is approximately in O(n) time.

2 Data structure

The original code is in O(n2) time, to improve this we use spatial binning and hashing.

• The function particle bucket returns the Z-Morton code of the location of a particle.

1

• In the function particle neighborhood we traverse the 27 neighboring bins of the current particle,
we record the Z-Morton codes of legal neighboring bins and return the number of legal bins.

• In the function hash particles we first clear the hash table, then we traverse all the particles and
regenerate an updated hash table. Each entry of the hash table stores the first particle in the
corresponding location, each particle also has a pointer to the next particle in the same bucket.

• We also added the function particles relocation, where we relocate the particle storing order. We
want particles in the same bucket stored in nearby memory regions, thus to maximize cache effi-
ciency.

3 Profiling and bottlenecks

Using the script from the lecture slides, we got the profiling shown in Figure 2.

Figure 2: Profiling of the code using the script from the lecture slides.

From the profiling it can be seen that the bottlenecks of our code is the nested double for loops in
the functions compute density and compute accel. More specifically, most time is spent in the while loop
of updating particle data and go to the next particle until the next pointer is NULL.

4 Design choices

We implemented two additional designs in terms of synchronization and locality issues.

• We added two #pragma omp parallel for to parallelize the two main loops in compute density and
compute accel. To further improve the performance, we added shared(p,hash). Variable p points to
the particles for current state and variable bins is used for finding adjecent bins. This improves the
run speed by 43.6%.

• To improve the locality, we added the function particles relocation which we call every 10 steps. In
this function we put particles belonging to same bins into nearby memory regions. This improves
the run speed by 11.2%.

5 Speedup

We tested our code using numbers of cores from 1 to 8. Figure 3 shows the speedup plot.
From Figure 3 we can see that when the number of cores increases from 1 to 4, the speed of our code

also increases. When the number of cores is 5, the speed is lower than 4 cores, this is because there are
two cpus, each has 4 cores, the communication is more expensive between two cpus than within one cpu,
cache sharing also effects this.

2

Figure 3: Speedup plot of actual result (blue curve) and ideal result (red curve).

6 Further discussions

Divide the time into computation time and synccomm time, using the result in Figure 3, the synccomm
time for one step is 0.88s for two cores, 1.08s for within one cpu, and 1.79s for between two cpus. To
handle more processors, a possible solution is to first divide all particles into several parts based on there
location, and then assign them to different processors. To handle more particles, the Z-Morton encoder
should be changed to using more bits, thus to prevent code overlapping.

3

