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Abstract

In this report, OpenMP is applied in one of the state of art multiphase fluid me-
chanics solver, NGA. It is reported to have at least 15% decreasing in the running
time in Von Karman vortex street test case.

1 Introduction

NGA is a high-order, fully conservative CFD code, which is tailed for turbulent flow computation.
It enables the prediction of turbulent multiphase reacting flows from first principles using large-
scale computing resources. NGA consists of a range of multi-physics modules integrated around a
variable density, low Mach number Navier-Stokes solver. NGA has been used in numerous DNS and
LES studies including liquid atomization [1,2], electrohydrodynamics [3], spray dynamics, spray
combustion[4], biomass gasification [5], premixed, partially-premixed, and non-premixed turbulent
jets [6,7], and combustion in technical devices, such as large-scale furnaces [8], internal combustion
engines, and aircraft engine afterburners.

Figure 1: Applications of the NGA code.

NGA has been developed using MPI at the birth of this code. In order to make the code easier to be
distributed, very few developers have tried to optimize the code. One possible way to have significant
speed up the code without big effort and compensate of clearness is to use OpenMP, which enables
a shared memory-multiprocessing process. In this paper, OpenMP is applied to some of the most
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time-consuming functions in NGA. At least 15% reduction in running time when simulating the Von
Karman Vortex street problem.

In this report, the idea of hybrid parallelization in simple test case, 1D wave problem, is tested in
Section 2. Von Karman Vortex street and profiling of the code is described in Section 3. Details
of application of OpenMP on NGA and the performance improvement are reported in Section 4.
Future work following this project is illustrated in Section 5.

2 Simple test of hybrid MPI-OpenMP

There are many reasons for one to use hybrid MPI-OpenMP parallelization. MPI deals well in
passing messages, but suffers from significant overheads in a memory sharing framework. On the
other hand, OpenMP has a shared memory architecture, but has problems in dealing with multiple
nodes. In many applications, multiple nodes are often needed to handle the heavy computation, in the
same time variables might need to be shared within a node. Hybridized MPI-OpenMP parallelization
provides a good solution. In the hybridized framework, MPI is used for inter-node communication,
OpenMP is used for intra-node variable sharing.

As the first part of our project, we begin with a simple testing experiment to get familiar with
mixed MPI-OpenMP programming. We made changes to the Wave1d implementation from previous
homework: in the function sim advance we added useless but time consuming operations to simulate
a process where more computation is needed to update a single cell.

We first compared two cases: two thread pure MPI, two node MPI each has two thread OpenMP,
and two node MPI each has four thread OpenMP. The time is shown in Table 1.

Table 1: First comparison.

# of cells 30000 40000 50000 60000
MPI 2 4.12s 5.43s 6.76s 8.34s

MPI-OpenMP 2x2 4.13s 5.50s 6.81s 8.08s
MPI-OpenMP 4x2 2.05s 2.72s 3.40s 4.06s

From Table 1 it can be seen that: 1.2x2 hybrid code runs as fast as pure MPI. In the hybrid code,
inter-node MPI communication is more expensive, also cell updating is faster as more threads do
the job. The two effects cancel each other. 2. 4x2 hybrid code runs faster than both 2x2 hybrid code
and pure MPI. If the number of cells becomes significantly larger, or the computation for updating
each cell increases significantly, and assume that we have sufficient computation power at hand, then
MPI-OpenMP will become a better choice.

We also conducted another comparison: pure MPI on two nodes each has eight threads, MPI on two
nodes and each has eight threads running OpenMP. The time is shown in Table 2.

Table 2: Second comparison.

# of cells 10000 100000 200000
MPI 8x2 0.47s 3.48s 6.98s

MPI-OpenMP 8x2 0.46s 3.45s 6.82s

From Table 1 it can be seen that: if using the same number of threads and single cell updating
doesnt involve heavy variable sharing, then pure MPI has almost the same scalability as a hybridized
framework. In the original NGA code, only MPI is used as the situation for the major computation
process is consistent with this experiment.

We would like to thank our dear instructor Prof. David Bindel for providing the mpihsub script.
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3 Von Karman vortex street/code profiling

Von Karman vortex street is a repeating pattern of swirling vortices, which is caused by unsteady
separation of flow around blunt bodies. Figure 2 shows a Von Karman vortex street caused by air
flow over the island of Jan Mayen in the Greenland Sea. With the improvement of computational
method, it is possible to simulate the Von Karman vortex street using everyday laptop. The simula-
tion of Von Karman vortex street is shown in Figure 3 with Reynolds number equals to 100.

One handy timing tool in NGA is the mpi wtime function. The running time is divided to four major
parts, i.e., IB(immersed boundary), combustion, velocity, and pressure calculation. The time cost in
percentage of IB(immersed boundary), combustion, velocity, and pressure calculation is plotted in
Figure 5. Pressure calculation consumes about 70 percent of the whole running time, which means it
is the most expensive part of the simulation. As a result, the start point is to find the time consuming
functions in the pressure calculation. In all the profiling tools on C4, Vtune is chosen to profile the
serial code. We choose Vtune as it has been used in the previous projects. It turns out that only the
serial code is profiled. The result for the simple profile is shown in Figure 4. The profiling result
simply shows the time spent in each function, rather than the cumulative time in each function. After
digging in the code, we found a more detailed profiling result shown in Table 3.

Figure 2: A Von Karman vortex street caused by the airflow over the island of Jan Mayen in the
Greenland Sea [9].

Figure 3: Simulation of Von Karman vortex street, RE = 100.

The profile result turns out that the preconditioning part is most time consuming part of the code.
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Figure 4: Profiling result of the serial code using Vtune.

Figure 5: Time cost in percentage for IB, combustion, velocity and pressure calculation.

Table 3: A improved profiling result.

function time
bbmg pcg solve 63.22s
bbmg relax gs 33.81s

bbmg com update z 10.80s
bbmg operator residual 7.93s

bbmg operator2̧f 6.36s
velocity residual v 4.47s
velocity residual w 4.47s
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4 Hybridized parallelization

Based on the analysis in the previous section, bbmg operator residual and velocity residuals w,
velocity residuals v, velocity residuals u are chosen to use OpenMP.

Some fragments of the code of applying OpenMP in bbmg operator residual is shown below.

1 !$OMP PARALLEL SHARED(lvl,n,k) PRIVATE(i,j)
2 ! Compute residual
3 !$OMP DO SCHEDULE(DYNAMIC,20)
4 do k=lvl(n)%kmin ,lvl(n)%kmax
5 do j=lvl(n)%jmin ,lvl(n)%jmax
6 do i=lvl(n)%imin ,lvl(n)%imax
7 lvl(n)%r(i,j,k) = lvl(n)%f(i,j,k) &
8 -sum(lvl(n)%lap(i,j,k,:,:,:)*lvl(n)%v(i-1:i+1,j-1:j+1,k-1:k+1))
9 end do
10 end do
11 end do
12 !$OMP END DO NOWAIT
13 !$OMP END PARALLEL

Code of applying OpenMP in velocity residuals w is shown below. The same code can be used in veloc-
ity residuals u and velocity residuals v with very few modifications.

1 !$OMP PARALLEL SHARED(rhoUi,rhoVi,rhoWi,interp Jw zm,rhoU,rhoV,rhoW,W,interp cyl v ym,
2 interp cyl w zm,Fcyl,interp Ju z,interp Jv z,stc1,stc2) PRIVATE(ii,jj,kk,i,j,k)
3 !$OMP DO SCHEDULE(DYNAMIC,32)
4 ! Convective part
5 do kk=kmin -stc1,kmax +stc2
6 do jj=jmin -stc1,jmax +stc2
7 do ii=imin -stc1,imax +stc2
8 i = ii-1; j = jj-1; k = kk-1;
9 rhoWi(i,j,k) = sum(interp Jw zm(i,j,:)*rhoW(i,j,k-stc1:k+stc2))
9 Fcyl(i,j,k) = &
10 - sum(interp cyl v ym(i,j,:)*rhoV(i,j-stc1:j+stc2,k)) * &
11 sum(interp cyl w zm(i,j,:)*W(i,j,k-stc1:k+stc2))
12 i = ii; j = jj; k = kk;
13 rhoUi(i,j,k) = sum(interp Ju z(i,j,:)*rhoU(i,j,k-stc2:k+stc1))
14 rhoVi(i,j,k) = sum(interp Jv z(i,j,:)*rhoV(i,j,k-stc2:k+stc1))
15 end do
16 end do
17 end do
18 !$OMP END DO NOWAIT
19 !$OMP END PARALLEL
20
21 !$OMP PARALLEL SHARED(FX,FY,FZ,VISC,grad w z,grad u z,grad w x,grad v z,grad w y,
22 U,V,W,divv u,divv v,divv w,ymi,interpv cyl v ym,interpv cyl w y,interp sc xz,
23 interp sc yz,stv1,stv2,st1,st2) PRIVATE(ii,jj,kk,i,j,k)
24 !$OMP DO SCHEDULE(DYNAMIC,32)
25 ! Viscous part
26 do kk=kmin -stv1,kmax +stv2
27 do jj=jmin -stv1,jmax +stv2
28 do ii=imin -stv1,imax +stv2
29 i = ii-1; j = jj-1; k = kk-1;
30 FZ(i,j,k) = &
31 + 2.0 WP*VISC(i,j,k)*( &
32 + sum(grad w z(i,j,k,:)*W(i,j,k-stv1:k+stv2)) &
33 - 1.0 WP/3.0 WP*( sum(divv u(i,j,k,:)*U(i-stv1:i+stv2,j,k)) &
34 + sum(divv v(i,j,k,:)*V(i,j-stv1:j+stv2,k)) &
35 + sum(divv w(i,j,k,:)*W(i,j,k-stv1:k+stv2))) &
36 + ymi(j)*sum(interpv cyl v ym(i,j,:)*V(i,j-stv1:j+stv2,k)))
37 i = ii; j = jj; k = kk;
38 FX(i,j,k) = &
39 + sum(interp sc xz(i,j,:,:)*VISC(i-st2:i+st1,j,k-st2:k+st1)) * &
40 ( sum(grad u z(i,j,k,:)*U(i,j,k-stv2:k+stv1)) &
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41 + sum(grad w x(i,j,k,:)*W(i-stv2:i+stv1,j,k)) )
42 FY(i,j,k) = &
43 + sum(interp sc yz(i,j,:,:)*VISC(i,j-st2:j+st1,k-st2:k+st1)) * &
44 ( sum(grad v z(i,j,k,:)*V(i,j,k-stv2:k+stv1)) &
45 + sum(grad w y(i,j,k,:)*W(i,j-stv2:j+stv1,k)) &
46 - yi(j)*sum(interpv cyl w y(i,j,:)*W(i,j-stv2:j+stv1,k)) )
47 end do
48 end do
49 end do
50 !$OMP END DO NOWAIT
51 !$OMP END PARALLEL
52
53 !$OMP PARALLEL SHARED(interp sc z,RHOmid,grad Pz,P,divv zx,divv zy,divv zz,
54 FX,FY,FZ,interp zz,interp zy,interp zx,divc zz,divc zx,divc zy,rhoWi,rhoUi,rhoVi,W,ymi,
55 interp cyl F z,interpv cyl F ym,Fcyl,ResW,Wold,rhoWold,dt uvw,srcWmid,st1,st2,
56 stc1,stc2,stv1,stv2) PRIVATE(i,j,k,RHOi,rhs,st)
57 !$OMP DO SCHEDULE(DYNAMIC,32)
58 ! Residual
59 do k=kmin ,kmax
60 do j=jmin ,jmax
61 do i=imin ,imax
62 RHOi = sum(interp sc z(i,j,:)*RHOmid(i,j,k-st2:k+st1))
63 ! Pressure + Viscous terms
64 rhs =-sum(grad Pz(i,j,k,:)*P (i,j,k-stc2:k+stc1)) &
65 +sum(divv zx(i,j,k,:)*FX(i-stv1:i+stv2,j,k)) &
66 +sum(divv zy(i,j,k,:)*FY(i,j-stv1:j+stv2,k)) &
67 +sum(divv zz(i,j,k,:)*FZ(i,j,k-stv2:k+stv1))
68 ! Convective term
69 do st=-stc2,stc1
70 n = interp zz(i,j,st)
71 rhs = rhs - divc zz(i,j,k,st) * rhoWi(i,j,k+st) * &
72 0.5 WP*(W(i,j,k+st+n+1)+W(i,j,k+st-n))
73 end do
74 do st=-stc1,stc2
75 n = interp zx(i,j,st)
76 rhs = rhs - divc zx(i,j,k,st) * rhoUi(i+st,j,k) * &
77 0.5 WP*(W(i+st+n-1,j,k)+W(i+st-n,j,k))
78 n = interp zy(i,j,st)
79 rhs = rhs - divc zy(i,j,k,st) * rhoVi(i,j+st,k) * &
80 0.5 WP*(W(i,j+st+n-1,k)+W(i,j+st-n,k))
81 end do
82 ! Cylindrical term - Convective
83 rhs = rhs + ymi(j)*sum(interp cyl F z(i,j,:)*Fcyl(i,j,k-stc2:k+stc1))
84 ! Cylindrical term - Viscous
85 rhs = rhs + ymi(j)*sum(interpv cyl F ym(i,j,:)*FY(i,j-stv1:j+stv2,k))
86 ! Full residual
87 ResW(i,j,k) = -2.0 WP*W(i,j,k)+Wold(i,j,k) &
88 + ( rhoWold(i,j,k) + dt uvw*rhs + srcWmid(i,j,k) ) RHOi
89 end do
90 end do
91 end do
92 !$OMP END DO NOWAIT
93 !$OMP END PARALLEL

Table 4 lists the running time for the first ten steps of code with OpenMP, OpenMP in bbmg operator residual,
OpenMp in both bbmg operator residual and velocity residual. The test is operated on pseudo 2D grid with
grid size of 512 ∗ 512 ∗ 6. After the simulation had reached a region with small running time variation, which
is after the first three steps, the running time is averaged. Code without OpenMP, the running time for each
step is 11.23 seconds. The average running time with OpenMP in the bbmg operator residual is 8.82 seconds,
which is 22 percent less than the previous timing. With more OpenMP in the code is not necessary to reduce
improve the performance of the code. For example, OpenMP is applied in both bbmg operator residual and
velocity residual in the last column, only 17 percent performance improvement is achieved, which is less than
the 22 percent.
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Table 4: Running time for the first ten steps of code with OpenMP, OpenMP in
bbmg operator residual, OpenMp in both bbmg operator residual and velocity residual.

time step no OpenMP OpenMP in bbmg operator residual OpenMP in bbmg and v
0 29.78s 39.79s 29.02s
1 32.65s 19.16s 23.66s
2 13.79s 9.96s 13.40s
3 11.31s 9.21s 10.66s
4 11.17s 8.87s 10.56s
5 11.40s 8.93s 10.56s
6 11.79s 8.53s 10.87s
7 11.23s 9.92s 10.48s
8 10.98s 8.32s 10.41s
9 10.95s 8.57s 10.49s
10 11.01s 8.18s 10.50s

average(3-10) 11.23s 8.82s 10.57s
improvement 22% 17%

Figure 6 shows timing results using different number of cores. From Figure 6 it can be seen the code scales
well.

Figure 6: Average time spent per step using different numbers of cores (in seconds).

5 Future work

One future improvement is to use Jacobi method in the bbmg relax function, rather than Gauss-Seidel method.
Although Gauss-Seidel method needs half of the iteration steps in Jacobi method, the computation for each
element can not be done in parallel. We expect to have much more improvement to use Jacobi method and
OpenMP in bbmg relax. We actually have our Jacobi version implemented and got correct results using it,
however it is much slower than we expected (about 100 times slower than the original Gauss-Seidel method).
Given the limited time we are not able to finish optimizing this Jacobi implementation. We will keep working
on this as our future work.
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The performance evaluation is performed on MacBook Air 2011 with 4 threads. The ultimate goal for this
project is to run on supercomputers with multi nodes and each node with multi threads. Therefore, another
future work would be figuring out how to use MPI among nodes and OpenMP on one node.

Von Karman vortex street is an interesting test case to start with, but it has been solved numerical for more than
forty years. More state of the art and more interesting problems can be solved by NGA. OpenMP would be
applied to more test cases to speed up the core in the future.
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