Hybridized Parallelization of NGA

Hang Chu', Lingnan Liu’, Jilong Wu', Mohammed Sameed Shafif, Sheng Wang*
fSchool of Electrical and Computer Engineering, Cornell University
tSibley School of Mechanical and Aerospace Engineering, Cornell University
hc772,11656, jw859,ms2788, sw767@cornell.edu

Abstract

In this report, OpenMP is applied in one of the state of art multiphase fluid me-
chanics solver, NGA. It is reported to have at least 15% decreasing in the running
time in Von Karman vortex street test case.

1 Introduction

NGA is a high-order, fully conservative CFD code, which is tailed for turbulent flow computation.
It enables the prediction of turbulent multiphase reacting flows from first principles using large-
scale computing resources. NGA consists of a range of multi-physics modules integrated around a
variable density, low Mach number Navier-Stokes solver. NGA has been used in numerous DNS and
LES studies including liquid atomization [1,2], electrohydrodynamics [3], spray dynamics, spray
combustion[4], biomass gasification [5], premixed, partially-premixed, and non-premixed turbulent

jets [6,7], and combustion in technical devices, such as large-scale furnaces [8], internal combustion
engines, and aircraft engine afterburners.

] Multiphase Combustion
modeling modeling
«Assumed interface » Premixed

geometry combustion
-Computed interface -Non-premixed
geometry combustion

Turbulence
modeling

- Direct numerical

+Deformable mesh
simulations (ALE)

-Large eddy
simulations

«Immersed
boundaries

Figure 1: Applications of the NGA code.

NGA has been developed using MPI at the birth of this code. In order to make the code easier to be
distributed, very few developers have tried to optimize the code. One possible way to have significant
speed up the code without big effort and compensate of clearness is to use OpenMP, which enables
a shared memory-multiprocessing process. In this paper, OpenMP is applied to some of the most

time-consuming functions in NGA. At least 15% reduction in running time when simulating the Von
Karman Vortex street problem.

In this report, the idea of hybrid parallelization in simple test case, 1D wave problem, is tested in
Section 2. Von Karman Vortex street and profiling of the code is described in Section 3. Details
of application of OpenMP on NGA and the performance improvement are reported in Section 4.
Future work following this project is illustrated in Section 5.

2 Simple test of hybrid MPI-OpenMP

There are many reasons for one to use hybrid MPI-OpenMP parallelization. MPI deals well in
passing messages, but suffers from significant overheads in a memory sharing framework. On the
other hand, OpenMP has a shared memory architecture, but has problems in dealing with multiple
nodes. In many applications, multiple nodes are often needed to handle the heavy computation, in the
same time variables might need to be shared within a node. Hybridized MPI-OpenMP parallelization
provides a good solution. In the hybridized framework, MPI is used for inter-node communication,
OpenMP is used for intra-node variable sharing.

As the first part of our project, we begin with a simple testing experiment to get familiar with
mixed MPI-OpenMP programming. We made changes to the Waveld implementation from previous
homework: in the function sim_advance we added useless but time consuming operations to simulate
a process where more computation is needed to update a single cell.

We first compared two cases: two thread pure MPI, two node MPI each has two thread OpenMP,
and two node MPI each has four thread OpenMP. The time is shown in Table 1.

Table 1: First comparison.

of cells | 30000 40000 50000 60000
MPI 2 4.12s 543s 6.776s 8.34s
MPI-OpenMP 2x2 | 4.13s 5.50s 6.81s 8.08s
MPI-OpenMP 4x2 | 2.05s 2.72s 3.40s 4.06s

From Table 1 it can be seen that: 1.2x2 hybrid code runs as fast as pure MPI. In the hybrid code,
inter-node MPI communication is more expensive, also cell updating is faster as more threads do
the job. The two effects cancel each other. 2. 4x2 hybrid code runs faster than both 2x2 hybrid code
and pure MPL. If the number of cells becomes significantly larger, or the computation for updating
each cell increases significantly, and assume that we have sufficient computation power at hand, then
MPI-OpenMP will become a better choice.

We also conducted another comparison: pure MPI on two nodes each has eight threads, MPI on two
nodes and each has eight threads running OpenMP. The time is shown in Table 2.

Table 2: Second comparison.

of cells | 10000 100000 200000
MPI 8x2 047s 3.48s 6.98s
MPI-OpenMP 8x2 | 0.46s 3.45s 6.82s

From Table 1 it can be seen that: if using the same number of threads and single cell updating
doesnt involve heavy variable sharing, then pure MPI has almost the same scalability as a hybridized
framework. In the original NGA code, only MPI is used as the situation for the major computation
process is consistent with this experiment.

We would like to thank our dear instructor Prof. David Bindel for providing the mpihsub script.

3 Von Karman vortex street/code profiling

Von Karman vortex street is a repeating pattern of swirling vortices, which is caused by unsteady
separation of flow around blunt bodies. Figure 2 shows a Von Karman vortex street caused by air
flow over the island of Jan Mayen in the Greenland Sea. With the improvement of computational
method, it is possible to simulate the Von Karman vortex street using everyday laptop. The simula-
tion of Von Karman vortex street is shown in Figure 3 with Reynolds number equals to 100.

One handy timing tool in NGA is the mpi_wtime function. The running time is divided to four major
parts, i.e., IB(immersed boundary), combustion, velocity, and pressure calculation. The time cost in
percentage of IB(immersed boundary), combustion, velocity, and pressure calculation is plotted in
Figure 5. Pressure calculation consumes about 70 percent of the whole running time, which means it
is the most expensive part of the simulation. As a result, the start point is to find the time consuming
functions in the pressure calculation. In all the profiling tools on C4, Vtune is chosen to profile the
serial code. We choose Vtune as it has been used in the previous projects. It turns out that only the
serial code is profiled. The result for the simple profile is shown in Figure 4. The profiling result
simply shows the time spent in each function, rather than the cumulative time in each function. After
digging in the code, we found a more detailed profiling result shown in Table 3.

3

)

Figure 2: A Von Karman vortex street caused by the airflow over the island of Jan Mayen in the
Greenland Sea [9].

Figure 3: Simulation of Von Karman vortex street, R = 100.

The profile result turns out that the preconditioning part is most time consuming part of the code.

90 T T T T T T T T T

80 B
70k .
)
& 60 1
&
3 ib
g 50r combustion |]|
2 " velocity
paiid pressure i
=
= i
=
1
100 o]
S Bs mB L e :
0 1 el ol T = T ul T —
0 2 4 6 8 10 12 14 16 18 20

Figure 5: Time cost in percentage for IB, combustion, velocity and pressure calculation.

Table 3: A improved profiling result.

function time
bbmg _pcg _solve 63.22s
bbmg _relax_gs 33.81s

bbmg_com_update_z 10.80s
bbmg _operator_residual | 7.93s

bbmg _operator2f 6.36s
velocity_residual v 4.47s
velocity_residual_-w 4.47s

4 Hybridized parallelization

Based on the analysis in the previous section, bbmg_operator_residual and velocity_residuals_w,
velocity_residuals_v, velocity_residuals_u are chosen to use OpenMP.

Some fragments of the code of applying OpenMP in bbmg_operator_residual is shown below.

ISOMP PARALLEL SHARED(lvl,n,k) PRIVATE(,))
! Compute residual
I$SOMP DO SCHEDULE(DYNAMIC,20)
do k=lvl(n)%kmin_,Ivl(n)%kmax_
do j=lvl(n)%jmin_,Ivl(n)%jmax_
do i=lvl(n)%imin_,lvl(n)%imax_
Ivl(n)%r(i,j,k) = Ivl(n)%1(i,j,k) &
-sum(lvl(n)%lap(i,j,k,:,:,:) ¥lvl(n)%v(i-1:i+1,j-1:j+1,k-1:k+1))
end do
10 enddo
11 end do
12 !$OMP END DO NOWAIT
13 !$OMP END PARALLEL

NoJN-LREN o NNU, I NS UV I S I

Code of applying OpenMP in velocity_residuals_-w is shown below. The same code can be used in veloc-
ity_residuals_u and velocity_residuals_v with very few modifications.

1 !$OMP PARALLEL SHARED(rhoUi,rhoVi,rhoWi,interp_Jw_zm,rhoU,rhoV,rhoW,W,interp_cyl_v_ym,
2 interp_cyl_w_zm,Fcylinterp_Ju_z,interp_Jv_z,stc1,stc2) PRIVATE(ii,jj,kk,i,j,k)

3 1$OMP DO SCHEDULE(DYNAMIC,32)

4 ! Convective part

5 do kk=kmin_-stc1,kmax_+stc2

6 dojj=jmin_-stcl,jmax_+stc2

7 do ii=imin_-stc1,imax_+stc2

8 i=ii-1;j=jj-1; k=kk-1;

9 rhoWi(i,j,k) = sum(interp_Jw_zm(i,j,:) *rhoW(i,j.k-stc1:k+stc2))

9 Feyl(i,j,k) = &
10 - sum(interp_cyl_v_ym(i,j,:)*rhoV(i,j-stc1:j+stc2.,k)) * &
11 sum(interp_cyl_-w_zm(i,j,:) *W(i,j,k-stc1:k+stc2))

12 i=ii;j=jj; k=kk;

13 rhoUi(i,j,k) = sum(interp_Ju_z(i,j,:) *rhoU(i,j,k-stc2:k+stc1))

14 rhoVi(i,j,k) = sum(interp_Jv_z(i,j,:) *rhoV(i,j,k-stc2:k+stc1))

15 end do

16 enddo

17 end do

18 !'$SOMP END DO NOWAIT

19 !'$SOMP END PARALLEL

20

21 !$OMP PARALLEL SHARED(FX,FY,FZ,VISC,grad_w_z,grad_u_z,grad_w_x,grad_v_z,grad_w_y,
22 U,V,Wdivv_u,divv_v,divv_w,ymi,interpv_cyl_v_ym,interpv_cyl_w_y,interp_sc_xz,
23 interp-sc_yz,stvl,stv2,stl,st2) PRIVATE(i,jj.kk,i,j,k)

24 '$OMP DO SCHEDULE(DYNAMIC,32)

25 ! Viscous part

26 do kk=kmin_-stvl,kmax_+stv2

27 do jj=jmin_-stv1,jmax_+stv2

28 do ii=imin_-stv1,imax_+stv2

29 i=ii-1; j=jj-1; k = kk-1;

30 FZ(ij.k) =&

31 + 2.0-WP*VISC(@,j,k)*(&

32 + sum(grad_w_z(i,j,k,:) *W(i,j.k-stv1:k+stv2)) &

33 - 1.0-WP/3.0_-WP*(sum(divv_u(i,j,k,:)*U(-stv1:i+stv2,j,k)) &
34 + sum(divv_v(i,j,k,))*V(,j-stvl:j+stv2,k)) &

35 + sum(divv_w(i,j,k,:)*W(i,j,k-stv1:k+stv2))) &

36 + ymi(j)*sum(interpv_cyl_v_ym(i.j,:)*V(i,j-stv1:j+stv2,k)))

37 i=1i;j=jj; k=kk;

38 FX(3,j.k) = &

39 + sum(interp-sc xz(i,j,:,:)* VISC(i-st2:i+st1,j,k-st2:k+stl)) * &
40 (sum(grad_u_z(i,j,k,:)*U(i,j,k-stv2:k+stv]l)) &

+ sum(grad_w _x(i,j,k,:) *W(i-stv2:i+stv1,j,k)))

FY(,j.k) = &
+ sum(interp-sc_yz(ij,:,:)* VISC(i,j-st2:j+st1 k-st2:k+stl)) * &
(‘sum(grad_v_z(i,j,k,:)*V(i,j,k-stv2:k+stvl)) &
+ sum(grad_w_y(i,j,k,:)*W(i,j-stv2:j+stv1,k)) &
- yi(j)*sum(interpv_cyl_w_y(i,j,:) *W(i,j-stv2:j+stv1,k)))
end do
end do

end do

1$OMP END DO NOWAIT

1$OMP END PARALLEL

1I$SOMP PARALLEL SHARED(interp_sc-z,RHOmid,grad_Pz,P,divv_zx,divv_zy,divv_zz,

54 FX,FY,FZ,interp_zz,interp_zy,interp_zx,divc_zz,divc_zx,divc_zy,rhoWi,rhoUi,rthoVi,W,ymi,
55 interp-cyl_F_z,interpv_cyl_F_ym,Fcyl,ResW,Wold,rhoWold,dt_uvw,srcWmid,st1,st2,
56 stcl,stc2,stvl,stv2) PRIVATE(,j,k,RHOi,rhs,st)

57 !$OMP DO SCHEDULE(DYNAMIC,32)

58 ! Residual

59 do k=kmin_kmax_

60 do j=jmin_,jmax_

61 do i=imin_,imax_

62 RHOi = sum(interp-sc_z(i,j,:) *RHOmid(i,j,k-st2:k+st1))

63 ! Pressure + Viscous terms

64 rhs =-sum(grad_Pz(i,j,k,:)*P (i,j,k-stc2:k+stcl)) &

65 +sum(divv_zx(i,j.k,:) *FX(i-stv1:i+stv2,j,k)) &

66 +sum(divv_zy(i,j.k,))*FY(i,j-stv1:j+stv2,k)) &

67 +sum(divv_zz(i,j,k,:)*FZ(i,j,k-stv2:k+stv1))

68 ! Convective term

69 do st=-stc2,stcl

70 n = interp_zz(i,j,st)

71 rhs =rhs - divc_zz(i,j.k,st) * rhoWi(i,j.k+st) * &

72 0.5-WP*(W(i,j,k+st+n+1)+W(1,j,k+st-n))

73 end do

74 do st=-stc1,stc2

75 n = interp_zx(i,j,st)

76 rhs =rhs - dive_zx(i,j,k,st) * thoUi(i+st,j,k) * &

77 0.5_WP*(W(i+st+n-1,j,k)+W(i+st-n,j,k))

78 n = interp_zy(i,j,st)

79 rhs = rhs - dive_zy(i,j,k,st) * thoVi(i,j+st,k) * &

80 0.5-WP*(W(i,j+st+n-1,k)+W(i,j+st-n,k))

81 end do

82 ! Cylindrical term - Convective

83 rhs = rhs + ymi(j)*sum(interp_cyl_F_z(i,j,:)*Fcyl(i,j,k-stc2:k+stc1))
84 ! Cylindrical term - Viscous

85 rhs = rhs + ymi(j)*sum(interpv_cyl_F_ym(i.j,:)*FY (i,j-stv1:j+stv2,.k))
86 ! Full residual

87 ResW(i,j,k) = -2.0_WP*W(i,j,k)+Wold(i,j,k) &

88 + (rthoWold(i,j,k) + dt_uvw*rhs + srcWmid(i,j,k)) RHOi

89 end do

90 enddo

91 enddo

92 !$OMP END DO NOWAIT

93 !$SOMP END PARALLEL

Table 4 lists the running time for the first ten steps of code with OpenMP, OpenMP in bbmg_operator _residual,
OpenMp in both bbmg_operator_residual and velocity residual. The test is operated on pseudo 2D grid with
grid size of 512 * 512 x 6. After the simulation had reached a region with small running time variation, which
is after the first three steps, the running time is averaged. Code without OpenMP, the running time for each
step is 11.23 seconds. The average running time with OpenMP in the bbmg_operator_residual is 8.82 seconds,
which is 22 percent less than the previous timing. With more OpenMP in the code is not necessary to reduce
improve the performance of the code. For example, OpenMP is applied in both bbmg_operator_residual and
velocity residual in the last column, only 17 percent performance improvement is achieved, which is less than

the 22 percent.

Table 4: Running time for the first ten steps of code with OpenMP, OpenMP in
bbmg_operator_residual, OpenMp in both bbmg_operator_residual and velocity residual.

time step no OpenMP OpenMP in bbmg_operator_residual ~OpenMP in bbmg and v

0 29.78s 39.79s 29.02s
1 32.65s 19.16s 23.66s
2 13.79s 9.96s 13.40s
3 11.31s 9.21s 10.66s
4 11.17s 8.87s 10.56s
5 11.40s 8.93s 10.56s
6 11.79s 8.53s 10.87s
7 11.23s 9.92s 10.48s
8 10.98s 8.32s 10.41s
9 10.95s 8.57s 10.49s
10 11.01s 8.18s 10.50s

average(3-10) 11.23s 8.82s 10.57s

improvement 22% 17%

Figure 6 shows timing results using different number of cores. From Figure 6 it can be seen the code scales
well.

10"

Time/step

Core Number 10

Figure 6: Average time spent per step using different numbers of cores (in seconds).

5 Future work

One future improvement is to use Jacobi method in the bbmg_relax function, rather than Gauss-Seidel method.
Although Gauss-Seidel method needs half of the iteration steps in Jacobi method, the computation for each
element can not be done in parallel. We expect to have much more improvement to use Jacobi method and
OpenMP in bbmg_relax. We actually have our Jacobi version implemented and got correct results using it,
however it is much slower than we expected (about 100 times slower than the original Gauss-Seidel method).
Given the limited time we are not able to finish optimizing this Jacobi implementation. We will keep working
on this as our future work.

The performance evaluation is performed on MacBook Air 2011 with 4 threads. The ultimate goal for this
project is to run on supercomputers with multi nodes and each node with multi threads. Therefore, another
future work would be figuring out how to use MPI among nodes and OpenMP on one node.

Von Karman vortex street is an interesting test case to start with, but it has been solved numerical for more than
forty years. More state of the art and more interesting problems can be solved by NGA. OpenMP would be
applied to more test cases to speed up the core in the future.

6 Reference
[1] O. Desjardins, V. Moureau, and H. Pitsch. An accurate conservative level set/ghost method for simulating
primary atomization. J. Comput. Phys.,227(18):83958416, 2008.

[2] O. Desjardins and H. Pitsch. A spectrally refined interface approach for simulating multiphase flows. J.
Comput. Phys., 228(5):1658-1677, 2009.

[3] B. P. Van Poppel, O. Desjardins, and J. W. Daily. A ghost fluid, level set methodology for simulating
electrohydrodynamic atomization of liquid fuels. J. Comp. Phys., 229:7977-7996, 2010.

[4] O. Desjardins and H. Pitsch. Modeling effect of spray evaporation on turbulent combustion. /0th Interna-
tional Congress on Liquid Atomization and Spray Systems, Kyoto, Japan, 2006.

[5]1 P. Pepiot, M. W. Jarvis, M. R. Nimlos, and G. Blanquart. Chemical kinetic modeling of tar formation during
biomass gasification. In 2010 Spring Meeting, Boulder, CO, 2010.

[6] E. Knudsen and H. Pitsch. A dynamic model for the turbulent burning velocity for large eddy simulation of
premixed combustion. Combust. Flame, 154:740-760, 2008.

[7] E. Knudsen and H. Pitsch. A general flamelet transformation useful for distinguishing between premixed
and non-premixed modes of combustion. Combust. Flame, 156:678-696, 2009.

[8] L. Wang and H. Pitsch. Prediction of pollutant emissions from industrial furnaces using large eddy simula-
tion. 5th US Combustion Meeting, San Diego, CA, 2007.

[9] http://forum.netweather.tv/blog/126/entry-1634-von-karman-vortices/

